Feuille 5 d'exercices

Exercice 1 (fer à cheval de Smale). On considère le diffémorphisme f défini dans un voisinage ouvert du carré $Q = [0, 1]^2$ avec le comportement illustré dans la figure 1. Pour $a \in]0, \frac{1}{2}[$, considérons les bandes horizontales

$$H_0 := [0,1] \times [0,a], \qquad H_1 := [0,1] \times [1-a,1].$$

On suppose que f envoie H_0, H_1 dans les bandes verticales

$$V_0 = f(H_0) = [0, a] \times [0, 1], \qquad V_1 := f(H_1) = [1 - a, 1] \times [0, 1],$$

et que les restrictions $f|_{H_0}$, $f|_{H_1}$ sont affines, avec

$$f \colon (x,y) \mapsto \begin{cases} (ax,by) & \text{si } (x,y) \in H_0, \\ (1-ax,b(1-y)) & \text{si } (x,y) \in H_1, \end{cases}$$

avec $b = \frac{1}{a}$.

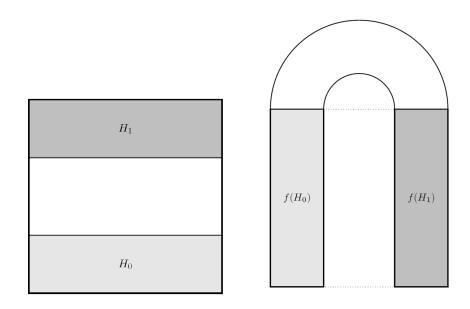


FIGURE 1. Difféomorphisme f dans un voisinage du carré Q.

- (1) Montrer que, pout tout entier $n \geq 1$ et toute suite finie $\epsilon_0, \ldots, \epsilon_{n-1} \in \{0,1\}^n$, $H_{\epsilon} := \bigcap_{k=0}^{n-1} f^{-k}(H_{\epsilon_k})$ est un rectange de la forme $[0,1] \times J_{\epsilon}$, avec J_{ϵ} un sous-intervalle de [0,1] de longueur a^n .
- (2) En déduire que $\bigcap_{k=0}^{+\infty} f^{-k}(Q) = [0,1] \times K$, où K est un ensemble de Cantor.
- (3) Démontrer que $\bigcap_{k=-\infty}^{+\infty} f^{-k}(Q)$ est un ensemble de Cantor.

Exercice 2. Le décalage unilatère sur un alphabet \mathcal{A} (ensemble fini) se définit comme l'espace des suites

$$\Sigma_{+}(\mathcal{A}) := \mathcal{A}^{\mathbb{N}}$$

muni de la transformation $\sigma \colon \Sigma_+(\mathcal{A}) \to \Sigma_+(\mathcal{A})$ définie par $\sigma(\alpha) = (\alpha_{n+1})_{n \in \mathbb{N}}$, pour $\alpha = (\alpha_n)_{n \in \mathbb{N}}$. On munit $\Sigma_+(\mathcal{A})$ de la distance $d(x,y) := \sum_{n \geq 0} \delta_{x_n - y_n} 3^{-n}$ (où $\delta_i = 1$ si i = 0, 0 sinon).

Le décalage bilatère sur $\overline{\mathcal{A}}$ se définit similairement sur $\Sigma(\mathcal{A}) := \mathcal{A}^{\mathbb{Z}}$ muni de la transformation $\sigma \colon \Sigma(\mathcal{A}) \to \Sigma(\mathcal{A})$ définie par $\sigma(\alpha) = (\alpha_{n+1})_{n \in \mathbb{Z}}$, pour $\alpha = (\alpha_n)_{n \in \mathbb{Z}}$. On munit $\Sigma_+(\mathcal{A})$ de la distance $d(x,y) := \sum_{n \in \mathbb{Z}} \delta_{x_n - y_n} 3^{-|n|}$.

- (1) Montrer que $\Sigma_{+}(A)$ est un ensemble de Cantor.
- (2) Montrer que $\sigma \colon \Sigma_{+}(\mathcal{A}) \to \Sigma_{+}(\mathcal{A})$ est continue, surjective, mais non injective.
- (3) Montrer que pour tout entier $n \ge 1$, $(\Sigma_+(A), \sigma)$ possède exactement $\#A^n$ point n-périodiques pour σ . Montrer que les orbites périodiques sont denses.
- (4) Montrer que le décalage $(\Sigma_{+}(\mathcal{A}), \sigma)$ admet une orbite dense, i.e., qu'il existe $x \in \Sigma_{+}(\mathcal{A})$ tel que $\{\sigma^{n}(x) : n \in \mathbb{Z}\}$ est dense.

Exercice 3. Soit $d \geq 2$ un entier, et $E_d \colon \mathbb{T}^1 \to \mathbb{T}^1$, $x \mapsto dx \mod 1$ l'endomorphisme linéaire associé. Montrer que E_d est semi-conjugué au décalage unilatère $\Sigma_+(\mathcal{A})$ sur l'alphabet $\mathcal{A} := \{0, \ldots, d-1\}$.

Exercice 4. Soit $g: [0,1] \to [0,1]$ défini par $g: x \mapsto 1 - |1 - 2x|$. Soit $I_0 := [0,\frac{1}{2}], I_1 := [\frac{1}{2},1],$ et $\Sigma := \Sigma_+(\{0,1\})$. Pour toute suite $\omega \in \Sigma_+(\{0,1\})$, on pose $I(\omega,n) := \bigcap_{k=0}^{n-1} g^{-k}(I_{\omega_k})$.

- (1) Montrer par récurrence que pour tout entier $n \ge 1$, $I(\omega, n)$ est un intervalle de longueur 2^{-n} vérifiant $g^n(I(\omega, n)) = [0, 1]$. En déduire que $\bigcap_{n>1} \overline{I(\omega, n)}$ contient exactement un point, qu'on note $\pi(\omega)$.
- (2) Démontrer qu'on obtient ainsi une application continue $\pi \colon \Sigma \to [0,1]$ satisfaisant $\pi \circ \sigma = g \circ \pi$. Vérifier que $\sigma^n(x) = x$ entraı̂ne que $g^n(\pi(x)) = \pi(x)$.
- (3) On pose $D := \{x \in [0,1] : \forall n \ge 0, g^n(x) \ne \frac{1}{2}\}$. Vérifier que D est dense dans [0,1].
- (4) Soit $\gamma \colon D \to \Sigma$ défini par $\gamma(x) := \omega \in \Sigma$ avec $g^n(x) \in I_{\omega_n}$. Montrer que $\pi \circ \gamma = \mathrm{Id}_D$ et en déduire que $\pi(\Sigma) = [0,1]$.

Exercice 5. Soit $p \ge 1$ un entier, et $A = (A_{i,j})_{1 \le i,j \le p}$ une matrice à coefficients dans $\{0,1\}$. Alors A définit un sous-décalage de la façon suivante. Soit

$$X_A := \{ \underline{i} = (i_k) \in \{1, \dots, p\}^{\mathbb{Z}} : A_{i_k, i_{k+1}} = 1, \ \forall k \in \mathbb{Z} \}.$$

L'ensemble X_A est fermé et invariant par la restriction, notée σ_A , du décalage σ ; on parle de sous-décalage de type fini. On dit qu'un mot $i_1 \ldots i_n$ de longueur $n \geq 1$ est admissible s'il peut être étendu en un mot $\underline{i} \in X_A$.

- (1) Montrer que pour tout $i, j \in \{1, ..., p\}$, le nombre de mots admissibles $ii_1 i_2 ... i_{n-1} j$ qui joignent $i \ a \ j$ est égal au coefficient (i, j) de la matrice A^n , i.e., $A^n_{i,j}$.
- (2) Montrer que le nombre d'orbites périodiques se calcule selon la formule

$$\#\{x \in X_A : \sigma_A^n x = x\} = \operatorname{tr}(A^n).$$

(3) Montrer que si pour tout $i, j \in \{1, ..., p\}$, il existe $n \ge 1$ tel que $A_{i,j}^n > 0$, alors σ_A est positivement transitive.

Exercice 6. Soit $n \ge 1$, A une matrice de taille $n \times n$ à coefficients entiers, et $T_A : \mathbb{T}^n \to \mathbb{T}^n$ l'endomorphisme linéaire associé. Rappelons que si det $A \ne 0$, alors T_A préserve la mesure de Lebesgue μ . Montrer que le système dynamique mesuré $(\mathbb{T}^n, \mathcal{B}, \mu, T_A)$ est ergodique si et seulement si les valeurs propres de A ne sont pas racines de l'unité.

Exercice 7. Soit $A := \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ et $T_A : \mathbb{T}^2 \to \mathbb{T}^2$ la $Cat\ Map$ d'Arnold. Montrer que T_A est \mathcal{C}^1 -structurellement stable, i.e., pour toute perturbation $g = T_A + \varphi$, avec $\|\varphi\|_{\mathcal{C}^1}$ assez petit, il existe une semi-conjugaison $h : \mathbb{T}^2 \to \mathbb{T}^2$ telle que $h \circ q = T_A \circ q$.