Feuille 3 d'exercices

Exercice 1 (Théorème de Gottschalk-Hedlund). Soit T un homéomorphisme minimal d'un espace topologique compact X. On se donne une application continue $\phi \colon X \to \mathbb{R}$ et on définit pour tout $n \in \mathbb{N}$, l'application $S_n := \sum_{k=0}^{n-1} \phi \circ T^k$. On veut prouver que les propriétés suivantes sont équivalentes :

- (1) pour tout $x \in X$, la suite $(S_n(x))_{n>0}$ est bornée;
- (2) il existe $x_0 \in X$ tel que la suite $(S_n(x_0))_{n\geq 0}$ est bornée;
- (3) il existe une fonction continue $\psi \colon X \to \mathbb{R}$ telle que $\phi = \psi \circ T \psi$.

On va commencer par prouver que (2) implique (3). On suppose que (2) est vérifiée pour un $x_0 \in X$ et on définit

$$F\colon \left\{ \begin{array}{ccc} X\times \mathbb{R} & \to & X\times \mathbb{R}, \\ (x,y) & \mapsto & (T(x),y+\phi(x)). \end{array} \right.$$

(1) Montrer que pour tout $\alpha \in \mathbb{R}$, F est un homéomorphisme qui commute avec

$$G_{\alpha} \colon \left\{ \begin{array}{ccc} X \times \mathbb{R} & \to & X \times \mathbb{R}, \\ (x,y) & \mapsto & (x,y+\alpha). \end{array} \right.$$

- (2) Montrer que l'ensemble ω -limite de $z_0 = (x_0, 0)$ (pour F) est une partie compacte non vide qui contient un ensemble invariant minimal compact K_0 .
- (3) Montrer que $G_{\alpha}(K_0) \cap K_0 = \emptyset$ pour tout réel $\alpha \neq 0$. En déduire que la projection

$$p_1: \left\{ \begin{array}{ccc} X \times \mathbb{R} & \to & X, \\ (x,y) & \mapsto & x, \end{array} \right.$$

est injective sur K_0 .

- (4) Expliquer pourquoi la projection de K_0 par p_1 est X. En déduire que K_0 est le graphe d'une fonction.
- (5) Montrer que (3) est vérifiée.
- (6) Montrer que (1), (2) et (3) sont équivalents.

Exercice 2. Soit X un espace topologique compact. Montrer qu'un homéomorphisme de X est minimal si et seulement s'il est positivement minimal.

Exercice 3. Soit X un espace topologique compact. Montrer qu'une application continue $T: X \to X$ est positivement minimale si et seulement si, pour toute partie ouverte $V \neq \emptyset$, il existe un entier $N \geq 0$ tel que

$$\cup_{n=0}^{N} T^{-n}(V) = X.$$

Exercice 4. Montrer que si T est un homéomorphisme d'un espace topologique compact X, il existe un point qui est positivement et négativement récurrent.

Exercice 5. Soit $f: \mathbb{T}^1 \to \mathbb{T}^1$ un homéomorphisme de degré 1 et $F: \mathbb{R} \to \mathbb{R}$ un relevé de f.

- (1) Rappeler pourquoi, pour tous $p \in \mathbb{Z}$, $q \in \mathbb{N} \setminus \{0\}$, on a
 - (a) $\frac{p}{q} < \rho(F)$ si et seulement si pour tout $x \in \mathbb{R}$, $p < F^q(x) x$;
 - (b) $\frac{p}{q} > \rho(F)$ si et seulement si pour tout $x \in \mathbb{R}$, $F^q(x) x < p$.
- (2) En déduire que $\rho(F^{-1}) = -\rho(F)$.
- (3) Montrer que pour $p, q \in \mathbb{Z}$, on a $\rho(F^q + p) = q\rho(F) + p$.

Exercice 6. Soit $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ les homéomorphismes de \mathbb{R} qui commutent à la translation $T_1: x \mapsto x+1$ et $\operatorname{Homeo}_+(\mathbb{T}^1)$ les homéomorphismes de \mathbb{T}^1 de degré 1 (comme on l'a vu ce sont les applications continues $f: \mathbb{T}^1 \to \mathbb{T}^1$ dont les relevés $F: \mathbb{R} \to \mathbb{R}$ sont dans $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$). On note d_{∞} les métriques sur $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ et $\operatorname{Homeo}_+(\mathbb{T}^1)$ comme dans le cours (pour $F, G \in \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ on a $d_{\infty}(F, G) := \sup_{x \in \mathbb{R}} |F(x) - G(x)|$ etc.).

- (1) Soient $f_0 \in \text{Homeo}_+(\mathbb{T}^1)$ et $F_0 \in \text{Homeo}_\mathbb{Z}(\mathbb{R})$ relevant f_0 . Montrer que, pour tout $\epsilon > 0$, si $f \in \text{Homeo}_+(\mathbb{T}^1)$ est assez proche de f_0 , alors il existe un relèvement F de f qui est ϵ -proche de F_0 .
- (2) Montrer que l'application

$$\rho \colon \left\{ \begin{array}{ccc} \operatorname{Homeo}_+(\mathbb{T}^1) & \to & \mathbb{T}, \\ f & \mapsto & \rho(f) \end{array} \right.$$

est continue.

Exercice 7. On suppose que $f = h_0 \circ r_\alpha \circ h_0^{-1} \in \text{Homeo}_+(\mathbb{T}^1)$ est conjugué à une rotation $r_\alpha \colon x \mapsto x + \alpha \mod 1$, avec $h_0 \in \text{Homeo}_+(\mathbb{T}^1)$ et $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

- (1) Décrire les homéomorphismes qui commutent avec r_{α} (i.e., les $g \in \text{Homeo}_{+}(\mathbb{T}^{1})$ tels que $g \circ r_{\alpha} = r_{\alpha} \circ g$).
- (2) Trouver tous les homéomorphismes $h \in \text{Homeo}_+(\mathbb{T}^1)$ tels que $f = h \circ r_\alpha \circ h^{-1}$.

Exercice 8 (Famille d'Arnold). On fixe $\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Pour tout $t \in \mathbb{R}$, on définit l'application $F_t \colon x \mapsto x + \alpha \sin(2\pi x) + t$ et l'homéomorphisme $f_t \in \text{Homeo}_+(\mathbb{T}^1)$ admettant F_t comme relèvement. On note également $F_t \colon z \mapsto z + \alpha \sin(2\pi z) + t$ son prolongement à \mathbb{C} .

- (1) Si $q \ge 1$, prouver que la fonction $z \mapsto F_t^q(z) z$ n'est pas constante sur \mathbb{C} .
- (2) Montrer que chaque f_t a un nombre fini de points périodiques.
- (3) Montrer que l'application $r: t \mapsto \rho(F_t)$ est continue, croissante, et vérifie r(t+1) = r(t) + 1, pour tout $t \in \mathbb{R}$. Montrer que chaque $r^{-1}(\{a\})$ est un intervalle non trivial si $a \in \mathbb{Q}$ et réduit à un point si $a \notin \mathbb{Q}$.
- (4) En déduire que r est un escalier du diable au sens où r est continue, croissante sur [0,1] avec r(0) < r(1) et dérivable de dérivée nulle sur un ensemble dense dans [0,1] dont le complémentaire est un ensemble de Cantor de [0,1].

Exercice 9.

- (1) Donner un exemple de couple $(F,G) \in (\mathrm{Homeo}_{\mathbb{Z}}(\mathbb{R}))^2$ tel que $\rho(F \circ G) \neq \rho(F) + \rho(G)$.
- (2) Montrer que $\rho(F \circ G) = \rho(F) + \rho(G)$ si $F, G \in \text{Homeo}_{\mathbb{Z}}(\mathbb{R})$ commutent.

Exercice 10. Montrer que si $f \in \text{Homeo}_+(\mathbb{T}^1)$ et $g \in \text{Homeo}_+(\mathbb{T}^1)$ commutent et ont chacun un point fixe, alors $f \circ g$ a également un point fixe :

- (1) en montrant que les relevés commutent;
- (2) en considérant des relevés adaptés, montrer que pour tout $x \in \mathbb{T}^1$, la suite $(g^n(x))_{n\geq 0}$ converge et regarder l'action de f sur les points fixes de g.

Exercice 11. Montrer que si $f \in \text{Homeo}_+(\mathbb{T}^1)$ et $g \in \text{Homeo}_+(\mathbb{T}^1)$ sont topologiquement conjugués, alors $\rho(f) = \rho(g)$.

Exercice 12. Soit $f \in \text{Homeo}_+(\mathbb{T}^1)$, avec $\rho(f) = [\alpha] \notin \mathbb{Q}/\mathbb{Z}$, et supposons f non minimal. Montrer qu'il existe une unique partie $X \subset \mathbb{T}^1$ fermée non-vide invariante par f telle que $f|_X$ soit minimale, et que

- (1) $X = \Omega(f)$ (ensemble des points non-errants);
- (2) pour tout point $x \in \mathbb{T}^1$, $\omega(x) = X$;
- (3) X est un ensemble de Cantor (ensemble compact sans point isolé totalement discontinu).

Exercice 13.

- (1) Montrer que toute fonction $\varphi \colon \mathbb{T}^1 \to \mathbb{R}$ de classe C^1 est à variations bornées.
- (2) Donner un exemple de fonction continue $\varphi \colon \mathbb{T}^1 \to \mathbb{R}$ qui ne soit pas à variations bornées.
- (3) Montrer que toute fonction monotone $\varphi \colon \mathbb{T}^1 \to \mathbb{R}$ est à variations bornées.
- (4) Montrer que si $\varphi \colon \mathbb{T}^1 \to \mathbb{R}$ est continue et à variations bornées, et $\psi \colon \Omega \to \mathbb{R}$ est C^1 , avec $\Omega \supset \varphi(\mathbb{T}^1)$ ouvert, alors $\psi \circ \varphi$ est à variations bornées.