Examen de Systèmes Dynamiques (3h)

Il n'est pas nécessaire de tout traiter pour avoir une très bonne note. On portera un soin particulier à la précision de la rédaction.

Exercice 1 Soit $T: X \to X$ une application continue sur un espace métrique X. On rappelle qu'un point $x \in X$ est *prépériodique* si x n'est pas périodique et s'il existe des entiers m > n > 0 tels que $T^m(x) = T^n(x)$. Pour tout point $x \in X$, on note $\mathcal{O}^+(x) := \{T^k(x) : k \ge 0\}$ l'orbite positive de x.

- 1. Montrer qu'un compact dénombrable admet toujours un point isolé. *Indication : penser à la propriété de Baire.*
- $2. \ \, \text{Montrer}$ que les conditions suivantes sont équivalentes :
 - (a) x est périodique ou prépériodique (b) $\mathcal{O}^+(x)$ est compacte.

Exercice 2 Le but de cet exercice est de montrer qu'il n'existe pas d'homéomorphisme positivement minimal de \mathbb{R}^p , $p \geq 1$. Par l'absurde, on suppose que $f \colon \mathbb{R}^p \to \mathbb{R}^p$ est un tel homéomorphisme. On note $\|\cdot\|$ la norme euclidienne, et on définit les boules $B := \{x \in \mathbb{R}^p : \|x\| < 1\}$, $\overline{B} := \{x \in \mathbb{R}^p : \|x\| \leq 1\}$.

- 1. Justifier que pour tout point $x \in \overline{B}$, l'ensemble $I(x) := \{n \ge 1 : f^n(x) \in B\}$ est non-vide.
- 2. Pour tout $x \in \overline{B}$, on note $n(x) := \min I(x)$. Prouver que $\overline{B} \ni x \mapsto n(x) \in \mathbb{N}$ est bornée.
- 3. Construire un ensemble borné positivement invariant.
- 4. Conclure.

Exercice 3 On note $\operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ l'ensemble des homéomorphismes F de \mathbb{R} qui commutent avec la translation $T_1 \colon x \mapsto x + 1$ (i.e., tels que $F \circ T_1 = T_1 \circ F$).

- 1. Soit $F \in \operatorname{Homeo}_{\mathbb{Z}}(\mathbb{R})$ un homéomorphisme de nombre de rotation $\rho(F) \notin \mathbb{Q}$. Montrer que pour tout $\varepsilon > 0$, il existe $x \in \mathbb{R}$ et des entiers $q \geq 1$, $p \in \mathbb{Z}$ tels que $x \varepsilon < F^q(x) p < x$.
- 2. En déduire que si $F, G \in \text{Homeo}_{\mathbb{Z}}(\mathbb{R})$ sont tels que F(x) < G(x) pour tout $x \in \mathbb{R}$ et $\rho(F) = \rho(G)$, alors $\rho(F) \in \mathbb{Q}$.
- 3. On fixe $\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Pour tout $t \in \mathbb{R}$, on définit l'application $F_t \colon x \mapsto x + \alpha \sin(2\pi x) + t$ et l'homéomorphisme $f_t \in \text{Homeo}_+(\mathbb{T}^1)$ admettant F_t comme relèvement. Nous avons vu que chaque f_t a un nombre fini de points périodiques.
 - (a) Montrer que l'application $r: t \mapsto \rho(F_t)$ est continue, croissante, et vérifie $r(\cdot + 1) = r(\cdot) + 1$.
 - (b) Montrer que chaque $r^{-1}(\{a\})$ est un intervalle non trivial si $a \in \mathbb{Q}$ et réduit à un point si $a \notin \mathbb{Q}$.
 - (c) En déduire que r est un escalier du diable au sens où r est continue, croissante sur [0,1], avec r(0) < r(1), et dérivable de dérivée nulle sur un ensemble dense dans [0,1] dont le complémentaire est un ensemble de Cantor de [0,1] (i.e., un sous-ensemble compact de [0,1], sans point isolé, totalement discontinu).

Exercice 4 Soit \mathcal{B} la tribu borélienne sur $\mathbb{T}^1 := \mathbb{R}/\mathbb{Z}$ et μ la mesure de Lebesgue. Pour $[\alpha] \in \mathbb{T}^1$, on considère le système dynamique mesuré $(\mathbb{T}^1, \mathcal{B}, \mu, r_{[\alpha]})$ associé à la rotation $r_{[\alpha]} \colon \mathbb{T}^1 \to \mathbb{T}^1$, $[x] \mapsto [x + \alpha]$.

- Montrer que (T¹, β, μ, r_[α]) est ergodique si et seulement si [α] ∉ Q/Z.
 Indication: on pourra considérer le développement en série de Fourier d'une fonction f ∈ L²(μ) invariante par r_[α].
- 2. Un système dynamique mesuré $(X_0, \mathcal{B}_0, \mu_0, T_0)$ avec $\mu_0(X_0) = 1$ est dit *mélangeant* si pour toutes fonctions $f, g \in L^2(\mu_0)$, on a

$$\lim_{n \to +\infty} \int_{X_0} f(x) g(T_0^n(x)) \, d\mu_0(x) = \int_{X_0} f(x) \, d\mu_0(x) \int_{X_0} g(x) \, d\mu_0(x).$$

Montrer que pour tout $[\alpha] \in \mathbb{T}^1$, le système dynamique mesuré $(\mathbb{T}^1, \mathcal{B}, \mu, r_{[\alpha]})$ n'est pas mélangeant.