Devoir à la maison (à rendre le 21 avril 2021)

On rappelle qu'un espace topologique est un *ensemble de Cantor* si c'est un ensemble compact métrisable, sans point isolé, totalement discontinu.

Exercice 1. Soit X un espace topologique compact.

- (1) Montrer qu'un homéomorphisme de X est minimal si et seulement s'il est positivement minimal.
- (2) Montrer qu'une application continue $T \colon X \to X$ est positivement minimale si et seulement si, pour toute partie ouverte $U \neq \emptyset$, il existe un entier $n \geq 0$ tel que

$$\bigcup_{k=0}^{n} T^{-k}(U) = X.$$

Exercice 2. On fixe un entier $d \geq 2$. Soit $F: \mathbb{R} \to \mathbb{R}$ une application de classe C^1 vérifiant

(1)
$$\forall x \in \mathbb{R}, \quad F'(x) > 1, \quad et \quad \forall x \in \mathbb{R}, \ \forall k \in \mathbb{Z}, \quad F(x+k) = F(x) + kd.$$

En particulier, F induit une application $f: \mathbb{T}^1 \to \mathbb{T}^1$ de degré d définie par $f \circ \pi = \pi \circ F$, avec $\pi: \mathbb{R} \to \mathbb{T}^1$. On note \mathcal{E}' l'ensemble des applications $H: \mathbb{R} \to \mathbb{R}$ continues, croissantes, et telles que

$$\forall x \in \mathbb{R}, \quad H(x+1) = H(x) + 1.$$

Soit $\widetilde{E}_d \colon \mathbb{R} \to \mathbb{R}$, $x \mapsto dx$. On definit l'application Ψ par : pour tout $H \in \mathcal{E}'$,

$$\Psi(H) := F^{-1} \circ H \circ \widetilde{E}_d \colon \mathbb{R} \to \mathbb{R}.$$

- (1) Montrer que \mathcal{E}' est stable par Ψ , puis que $\Psi \colon \mathcal{E}' \to \mathcal{E}'$ a un unique point fixe, noté H_1 .
- (2) Montrer que H_1 est injective et relève un homéomorphisme $h_1: \mathbb{T}^1 \to \mathbb{T}^1$ de degré 1.
- (3) En déduire que f est conjugué à l'endomorphisme linéaire $E_d : \mathbb{T}^1 \to \mathbb{T}^1$, $x \mapsto dx \mod 1$.

Exercice 3 (Famille d'Arnold). On fixe $\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Pour tout $t \in \mathbb{R}$, on définit l'application $F_t : x \mapsto x + \alpha \sin(2\pi x) + t$ et l'homéomorphisme $f_t \in \text{Homeo}_+(\mathbb{T}^1)$ tel que $f_t \circ \pi = \pi \circ F_t$, avec $\pi : \mathbb{R} \to \mathbb{T}^1$. On a montré que chaque f_t a un nombre fini de points périodiques, que l'application $r : t \mapsto \rho(F_t)$ est continue, croissante, et vérifie r(t+1) = r(t) + 1, pour tout $t \in \mathbb{R}$.

- (1) Montrer que l'ensemble $r^{-1}(\{a\})$ est un intervalle non trivial lorsque $a \in \mathbb{Q}$, et que $r^{-1}(\{a\})$ est réduit à un point lorsque $a \notin \mathbb{Q}$.
- (2) En déduire que r est un escalier du diable au sens où r est continue, croissante sur [0,1] avec r(0) < r(1) et dérivable de dérivée nulle sur un ensemble dense dans [0,1] dont le complémentaire est un ensemble de Cantor de [0,1].

Exercice 4. On fixe un groupe $\Gamma \subset \operatorname{Homeo}_+(\mathbb{T}^1)$. On définit l'*orbite* d'un point $x \in \mathbb{T}^1$ sous l'action de Γ comme l'ensemble

$$\Gamma(x) := \{ g(x) \mid g \in \Gamma \}.$$

Montrer que l'on est dans exactement un des trois cas suivants :

- il existe une orbite finie;
- toutes les orbites sont denses;
- il existe un unique ensemble compact minimal, invariant sous l'action de Γ et c'est un ensemble de Cantor.