Belgrade Jummer School on Dynamico

July 17-22, 2021

Entropy rigidity for 3D conservative Anosov flows and dispersing billiards

Belgrade Summer School in Dynamics - Martin Leguil

Anosov Flows

•
$$\Phi = (\Phi^t)_{t \in \mathbb{R}}$$
: C^2 flow on M

•
$$X_{\Phi}: x \mapsto \frac{d}{dt}|_{t=0} \Phi^{t}(x)$$
: flow vector field

Recall that Φ Anosov if $TM = E_{\Phi}^{s} \oplus \mathbb{R}X_{\Phi} \oplus E_{\Phi}^{u}$, and for $C, \lambda > 0$:

$$\begin{split} \|D_x \Phi^t \cdot v\| &\leq C e^{-\lambda t} \|v\|, \qquad \forall x \in \Lambda, \ v \in E^s_{\Phi}(x), \ t \geq 0 \\ \|D_x \Phi^{-t} \cdot v\| &\leq C e^{-\lambda t} \|v\|, \qquad \forall x \in \Lambda, \ v \in E^u_{\Phi}(x), \ t \geq 0 \end{split}$$

Notation: $E_{\Phi}^{cs} := E_{\Phi}^{s} \oplus \mathbb{R}X_{\Phi}$, $E_{\Phi}^{cu} := E_{\Phi}^{u} \oplus \mathbb{R}X_{\Phi}$

Anosov Flows

• suspensions of Anosov diffeomorphisms:

e.g. for the cat map
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 on $\mathbb{T}^2 := \mathbb{R}^2 / \mathbb{Z}^2$
 \rightsquigarrow flow $(x, s) \mapsto (x, s + t)$ on $\mathbb{T}^2 \times \mathbb{R} / \sim$, $(x, 1) \sim (A \cdot x, 0)$

- geodesic flows on negatively curved Riemannian manifolds
- surgeries ~> new examples (Handel-Thurston, Goodman...)

Algebraic systems

- Algebraic systems: "affine systems on homogeneous spaces"
 - G Lie group
 - $K \subset G$ compact subgroup
 - $\Gamma \subset G$ discrete cocompact subgroup (uniform lattice)
 - $M = \Gamma \backslash G / K$ homogeneous
 - algebraic flow $\Phi = (\Phi^t)_{t \in \mathbb{R}}$ on M: $\Phi^t \colon \Gamma g K \mapsto \Gamma g \exp(t\alpha) K$, with α in the Lie algebra of G
- Φ algebraic Anosov flow on a 3-mfd: Tomter ('68) → up to finite cover,
 - geodesic flow of a surface of constant negative curvature
 - \bullet suspension of a hyperbolic automorphism of \mathbb{T}^2

Anosov flows

- Anosov diffeomorphisms: conjecturally, up to topological conjugacy, algebraic models account for all Anosov diffeomorphisms
- Anosov flows ~> rich behavior:
 - Franks-Williams ('80): there exists a closed connected 3-manifold *M* which admits a non-transitive Anosov flow
 - Handel-Thurston ('80): there exists a compact 3-manifold *M* which admits an analytic non-algebraic Anosov flow
 - Foulon-Hasselblatt ('13): there exists a hyperbolic 3-manifold M which admits a contact Anosov flow that is not topologically orbit equivalent to an algebraic flow
 - Bonatti-Béguin-Yu ('14): 3-manifolds supporting both transitive and non-transitive Anosov flows...

Locally symmetric spaces, Katok's conjecture

- (M,g): C^{∞} smooth compact Riemannian manifold
- geodesic symmetry at $x \in M$: $s_x := \exp_x \circ (-\operatorname{Id}_{T_xM}) \circ \exp_x^{-1}$
- (M,g) locally symmetric if s_x is an isometry for all $x \in M$

Conjecture (Katok Entropy Conjecture)

- (M,g): connected Riemannian manifold of negative curvature
- Φ: geodesic flow, μ: Liouville measure

Then $h_{\mathrm{top}}(\Phi) = h_{\mu}(\Phi) \iff (M,g)$ is locally symmetric

Theorem (Katok, '82)

- (S,g): negatively curved surface
- Φ: geodesic flow, μ: Liouville measure

Then $h_{\mathrm{top}}(\Phi) = h_{\mu}(\Phi) \iff (S,g)$ has constant < 0 curvature

Natural invariant measures

 Φ transitive Anosov flow on a compact Riemannian manifold M

- unique invariant proba. ν such that h_{top}(Φ) = h_ν(Φ): measure of maximal entropy (or MME)
- unique invariant proba. whose conditionals along unstable manifolds are absolutely continuous with respect to Lebesgue: Sinai-Ruelle-Bowen (or SRB) measure

Remark

When Φ preserves a smooth volume $\mathrm{Vol},$ it is transitive/ergodic, and SRB measure = Vol

Question

Let Φ be a C^{∞} transitive Anosov on a 3-manifold. If MME = SRB, is Φ smoothly conjugate to an algebraic flow?

Contact Anosov flows & Foulon's question

Theorem (Foulon, '01)

Let Φ be a contact Anosov flow on a closed 3-manifold.

Then MME = contact volume $\iff \Phi$ is, up to finite cover, smoothly conjugate to geodesic flow of a metric of constant negative curvature on a closed surface

Question (Foulon)

Let Φ be a smooth Anosov flow on a 3-manifold which preserves a smooth volume μ . If $h_{top}(\Phi) = h_{\mu}(\Phi)$, is Φ smoothly conjugate to an algebraic flow? Main result: entropy rigidity for 3D Anosov flows

Positive answer to Foulon's question:

Theorem (De Simoi-L.-Vinhage-Yang, '20)

Let $k \ge 5$ and let Φ be a C^k Anosov flow on a compact connected 3-manifold M such that $\Phi_*\mu = \mu$ for some smooth volume μ .

Then $h_{top}(\Phi) = h_{\mu}(\Phi) \iff \Phi$ is $C^{k-\varepsilon}$ -conjugate to an algebraic flow, for $\varepsilon > 0$ arbitrarily small

Rigidity: high regularity phenomenon

Remark

Parry's synchronization procedure ('86):

- Φ : C^2 Axiom A flow on a compact Riemannian manifold
- A: attractor whose unstable distribution is C^1

 \rightsquigarrow there exists a C^1 time change such that for the new flow, the SRB measure of the attractor coincides with the MME

 \rightsquigarrow for any C^2 transitive Anosov flow Φ on a 3-manifold: Φ is C^1 -orbit equivalent to an Anosov flow for which the SRB measure is equal to the MME

Remark

Adeboye-Bray-Constantine ('19): there exist systems with more geometric structure that still exhibit rigidity in low regularity

Entropy rigidity for Anosov flows

Some ingredients of the proof:

- $\textbf{0} equality of periodic Lyapunov exponents when <math>\mathsf{MME} = \mathsf{SRB}$
- expansion of Lyapunov exponents of some periodic orbits with prescribed combinatorics (Birkhoff Normal Form)
- Anosov cocycle/class and smoothness of the invariant foliations, connection with the BNF (after Hurder-Katok)
- orbit equivalence to algebraic flow when smooth weak stable/unstable foliations (after Ghys)
- Irom orbit equivalence to flow conjugacy

1) Periodic Lyapunov exponents when MME = SRB

- *M*: C^{∞} compact Riemannian 3-manifold
- $\Phi \colon M \to M$ conservative C^k Anosov flow, $k \ge 2$
- for any periodic orbit *O* = {Φ^t(x)}_t of period
 L(*O*) = *L*(x) > 0, the Lyapunov exponent of *O* is

$$LE(\mathcal{O}) = LE(x) = \frac{1}{\mathcal{L}(x)} \log J_x^u(\mathcal{L}(x)),$$

where $J^u_x(t)$: Jacobian of $D\Phi^t \colon E^u(x) \to E^u(\Phi^t(x))$

Proposition (De Simoi-L.-Vinhage-Yang)

If SRB measure = MME, then for any periodic orbit O:

$$LE(\mathcal{O}) = h_{top}(\Phi)$$

Equivalently, for any $x \in \mathcal{O}$:

$$J^u_x(\mathcal{L}(x)) = e^{h_{\mathrm{top}}(\Phi)\mathcal{L}(x)}$$

Birkhoff Normal Form (BNF)

- let F be a local C^∞ conservative surface diffeomorphism
- $x = F^q(x)$ hyperbolic periodic point
- $0 < \lambda < 1 < \lambda^{-1}$: eigenvalues of DF_x^q

(Moser)-Sternberg:

there exists a local C^{∞} volume-preserving map R which conjugates F^q to its Birkhoff Normal Form $N = R \circ F^q \circ R^{-1}$:

$$N = N_{\Delta} : (\xi, \eta) \mapsto (\Delta(\xi\eta) \cdot \xi, \Delta(\xi\eta)^{-1} \cdot \eta)$$

for some function $\Delta : z \mapsto \lambda + a_1 z + a_2 z^2 + \dots \Rightarrow (a_i)_{i \ge 0}$ Birkhoff
invise_ta
R
N = c:# }

- *M*: C^{∞} smooth compact Riemannian 3-manifold
- let $\Phi \colon M \to M$ be a C^k Anosov flow, $k \ge 2$
- $\Phi_*\mu=\mu$ for some smooth volume measure μ
- \bullet Markov family ${\cal R}$ for Φ with cross section ${\cal S}$

- $\mathcal{F} {:}$ Poincaré map induced by Φ on the cross section $\mathcal S$
- $x \in S$: periodic point of period $\mathcal{L}(x) > 0$
- $x_{\infty} \in S$: homoclinic point $(x_{\infty} \in \mathcal{W}_{\Phi}^{cs}(x) \pitchfork \mathcal{W}_{\Phi}^{cu}(x))$

- $x_{\infty} \longleftrightarrow \ldots 0001000 \ldots$: homoclinic point
- sequence $(h_n)_{n\geq 0}$ of periodic orbits in the horseshoe:

$$h_n \longleftrightarrow \dots |\underbrace{0 \dots 0}_{n+1} 1| \underbrace{0 \dots 0}_{n+1} 1| \underbrace{0 \dots 0}_{n+1} 1| \underbrace{0 \dots 0}_{n+1} 1| \dots$$
$$x_n^1 \longleftrightarrow \dots |0 \dots 0 \underbrace{0 1}_{\uparrow} |0 \dots 0 1| \dots$$

- x is a saddle fixed point, with eigenvalues 0 $<\lambda<1<\lambda^{-1}$
- near $x \in S$, $\exists C^k$ change of coordinates R such that

$$R \circ \mathcal{F} \circ R^{-1} = \mathsf{N} \colon (\xi, \eta) \mapsto (\Delta(\xi\eta)\xi, \Delta(\xi\eta)^{-1}\eta),$$

for some C^k function $\Delta(z) = \lambda + a_1 z + ...$ $\rightsquigarrow a_1 \in \mathbb{R}$: first Birkhoff invariant

Proposition (De Simoi-L.-Vinhage-Yang)

As $n \to +\infty$, we have the asymptotic expansion

$$tr(D\mathcal{F}_{x_{n}^{n}}^{n+2}) = C_{0}\lambda^{-n} + nC_{1}a_{1} + O(1)$$

where $C_0, C_1 \in \mathbb{R}^*$ are nonzero constants

- let $\mathcal{L}^{(0)} = \mathcal{L}(x) > 0$ be the period of x for Φ
- for any $n \ge 0$, let $\mathcal{L}_n = \mathcal{L}(x_n^1) > 0$ be the period of x_n^1 for Φ

Lemma

For some $\mathcal{L}^{(1)} \in \mathbb{R}$, we have the following asymptotic expansion:

$$\mathcal{L}_n = n\mathcal{L}^{(0)} + \mathcal{L}^{(1)} + O(\lambda^n)$$

Lemma

If MME = SRB measure, then for each $n \ge 0$, the eigenvalues of $D\mathcal{F}_{x_n^1}^{n+2}$ are equal to $e^{\pm h_{top}(\Phi)\mathcal{L}_n}$

Corollary

If MME = SRB measure, then

$$\operatorname{tr}(D\mathcal{F}^{n+2}_{x^1_n})=C^{-1}_{\infty}\lambda^{-n}+O(1),\qquad C_{\infty}:=e^{h_{\operatorname{top}}(\Phi)\mathcal{L}^{(1)}}>0$$

Lemma

- $tr(D\mathcal{F}_{x_n^1}^{n+2}) = C_0\lambda^{-n} + nC_1a_1 + O(1)$, where $C_0, C_1 \neq 0$
- if MME = SRB measure, then

$$\operatorname{tr}(D\mathcal{F}_{\mathbf{x}_n^1}^{n+2}) = C_\infty^{-1}\lambda^{-n} + O(1), \qquad C_\infty := e^{h_{\operatorname{top}}(\Phi)\mathcal{L}^{(1)}} > 0$$

Corollary (De Simoi-L.-Vinhage-Yang)

If MME = SRB measure, then for any periodic orbit O, the first Birkhoff invariant at O of the Poincaré map \mathcal{F} vanishes

3) Anosov cocycle/class (after Hurder-Katok)

 $\Phi \colon M \to M$ conservative C^k Anosov flow, $k \ge 2$

Definition (Cocycle/coboundary)

• $C: M \times \mathbb{R} \to \mathbb{R}$ is a C^1 cocycle over Φ if it is of class C^1 and

 $C(x,t+s) = C(x,t) + C(\Phi^t(x),s), \quad \forall x \in M, \, \forall t,s \in \mathbb{R}$

 a C¹ cocycle B: M × ℝ → ℝ over Φ is a C¹ coboundary if there exists a C¹ function u: M → ℝ such that

$$B(x,t) = u \circ \Phi^t(x) - u(x), \quad \forall x \in M, \, \forall t \in \mathbb{R}$$

 C¹-cohomology class of a C¹ cocycle C: M × ℝ → ℝ: image of C in the group of C¹ cocycles over Φ modulo coboundaries 3) Anosov cocycle/class (after Hurder-Katok)

- the invariant foliations $\mathcal{W}^{cs}_{\Phi}, \mathcal{W}^{cu}_{\Phi}$ are \mathcal{C}^1
- Anosov cocycle $A_{\Phi} \colon M \times \mathbb{R} \to \mathbb{R}$
- Anosov class [A_Φ]: "obstruction to upgraded regularity of the invariant foliations"
- for any x in a periodic orbit \mathcal{O} of period $\mathcal{L}(\mathcal{O}) = \mathcal{L}(x) > 0$,

$$A_{\Phi}(x,\mathcal{L}(x)) = -\lambda^{-1}a_1,$$

where $0 < \lambda < 1 < \lambda^{-1}$ are the eigenvalues of Poincaré map, and $a_1 = a_1(\mathcal{O})$ is the first Birkhoff invariant

Ansiar courde & Normal forms Let us restrict oncelves to Smooth area - preer vine Anssor Alleomorphisms of T?. De Latte : I local smooth condinate systems around each point p tab Lependo Continuously (actually C') on the point p which brings the diffeomorphism into the Moser Normal Form $f: (x, y) \mapsto \begin{pmatrix} \lambda p & (p & (w, y)) \\ \lambda p & (p & (w, y)) \end{pmatrix} \begin{pmatrix} (\mu p') & (\mu p') & (\mu p') \\ \lambda p & (p & (w, y)) \end{pmatrix}$ • (n,y): local condinates around the paint of / La condinates around the image of p $\left(p\left(n,y\right) : Corrsponds to the resonance <math>\lambda_p \lambda_p^{-1} = 1$ (an area-poser ration) and more generally to the family of resonances λ_p^{n+1} , $n \in \mathbb{Z}$ as $f + (q_p(0) = 1)$

Let no nour assime that q = periodic point of a flow Cake a local cross-section I at p and consider the Poincare mop F on I ~ f: Normel Form of F around p Z P F(z) $\gamma^{-1}n^2(\varphi^{-1})(ny)$ $\lambda^{-1} \times y \left(e^{-1} \right)^{\prime} \left(my \right) + \lambda^{-1} e^{-1} \left(\times y \right)$ $\longrightarrow \int f(n,y) =$ $\lambda xy \varphi'(xy) + \lambda \varphi(xy) /$ $\lambda y^{2} q^{\prime} (ny)$ $\begin{array}{c} \sim & \\ \sim & \\ \end{array} \quad \begin{array}{c} \uparrow \\ \left(\circ, \gamma \right) \end{array} = \left(\begin{array}{c} \gamma^{-1} & \circ \\ \gamma \\ \gamma \\ \varphi \\ \left(\circ \right) \end{array} \right)$ $\int \mathcal{T} = 0$ $\lambda e (o_{j})$.

By invariance of the motoble direction under df , and since $f(0, y) = (0, 2y)$
$df(\partial_{1}y)(1, \alpha(y)) = \begin{pmatrix} \lambda^{-1} & 0 \\ \lambda y^{2} \dot{q}(0) & \lambda \end{pmatrix} \begin{pmatrix} \lambda \\ \alpha(y) \end{pmatrix} = \begin{pmatrix} \lambda^{-1} & 0 \\ \lambda y^{2} \dot{q}(0) + \lambda \alpha(y) \end{pmatrix} \stackrel{!}{=} \mathcal{K} \begin{pmatrix} 1 \\ \alpha(\lambda y) \end{pmatrix}$
$\Rightarrow \alpha(\lambda y) = \lambda^2 y^2 \varphi'(0) + \lambda^2 \alpha(y) \qquad (A)$
If the motoble bundle is C^2 , differentiating (A) twice with respect to y at 0: (a is C^2)
$\gamma^{2} a''(0) = k \lambda^{2} q'(0) + \lambda^{2} a''(0)$ i.e. $q'(0) = 0$
In other words, 4'(0) \$ 0 is an obstruction to the C ² regularity of the (Anosov distruction)
invariant bundles

3) Anosov cocycle/class (after Hurder-Katok)

- $\Phi: M \to M$ a C^k Anosov flow on some 3-manifold $M, \ k \geq 5$
- $\Phi_*\mu=\mu$ for some smooth volume μ

Theorem (Hurder-Katok, '90)

The following properties are equivalent:

- the Anosov class $[A_{\Phi}]$ vanishes
- for any periodic orbit \mathcal{O} , $a_1(\mathcal{O}) = 0$
- the weak stable/weak unstable distributions $E_{\Phi}^{cs}/E_{\Phi}^{cu}$ are C^{k-3}

-> Recall that
$$[A_{\overline{d}}] = 0 \iff \forall a \text{ periodic}, of period $\mathcal{X}(x) = \mathcal{X}(6),$
 $A_{\overline{d}}(x, \mathcal{X}(x)) = 0 = -\lambda^{-1}a_{1}(6)$$$

4) Orbit equivalence to algebraic flow (after Ghys)

- $\Phi: M \to M$ a C^k Anosov flow on some 3-manifold $M, \ k \ge 5$
- $\Phi_*\mu=\mu$ for some smooth volume μ

Theorem (Ghys, '93)

If W^{cu}_{Φ} and W^{cs}_{Φ} are of class $C^{1,1}$, then Φ is C^k -orbit equivalent to an algebraic flow

Corollary (De Simoi-L.-Vinhage-Yang)

If
$$h_{ ext{top}}(\Phi) = h_{\mu}(\Phi)$$
, then

- **1** $[A_{\Phi}] = 0$
- 2 $E_{\Phi}^{cs}/E_{\Phi}^{cu}$ are of class C^{k-3}
- **(3)** Φ is C^k -orbit equivalent to an algebraic model

5) From orbit equivalence to flow conjugacy

- $\Phi: M \to M$ a C^k Anosov flow on some 3-manifold $M, \ k \ge 5$
- $\Phi_*\mu=\mu$ for some smooth volume μ
- Ghys ('87): examples of analytic Anosov flows orbit equivalent but not conjugate to an algebraic model

Theorem (De Simoi-L.-Vinhage-Yang)

If $MME = \mu$, then for any $\varepsilon > 0$, Φ is $C^{k-\varepsilon}$ conjugate to an algebraic flow

5) From orbit equivalence to flow conjugacy

- assume that MME = μ (μ smooth Φ -invariant volume)
- up to C^k conjugacy, Φ is a time change of an algebraic flow Ψ
- linear time change: $h_{ ext{top}}(\Phi) = h_{ ext{top}}(\Psi) = h > 0$
- $x \in M$ point in some periodic orbit \mathcal{O} :
 - period $\mathcal{L}_{\Phi}(\mathcal{O}) = \mathcal{L}_{\Phi}(x) > 0$ for Φ
 - period $\mathcal{L}_{\Psi}(\mathcal{O}) = \mathcal{L}_{\Psi}(x) > 0$ for Ψ
- as $\mathsf{MME} = \mu$, for any periodic point $x \in M$,

 $J^{u}_{\Phi,x}(\mathcal{L}_{\Phi}(x)) = e^{h\mathcal{L}_{\Phi}(x)}$ $J^{u}_{\Psi,x}(\mathcal{L}_{\Psi}(x)) = e^{h\mathcal{L}_{\Psi}(x)}$

• as Φ is a time change of Ψ , same periodic eigenvalues \Rightarrow for any periodic orbit \mathcal{O} , $\mathcal{L}_{\Phi}(\mathcal{O}) = \mathcal{L}_{\Psi}(\mathcal{O})$

5) From orbit equivalence to flow conjugacy

• let \mathcal{H} be a C^k orbit equivalence between Φ and Ψ :

$$X_{\Phi} \cdot \mathcal{H}(x) = w_{\mathcal{H}}(x) X_{\Psi}(\mathcal{H}(x)), \qquad \forall x \in M$$

 $\rightsquigarrow w_{\mathcal{H}} \colon M \to \mathbb{R} \text{ measures "speed" of } \mathcal{H} \text{ along flow direction}$

- $w_{\mathcal{H}} 1$ integrates to 0 over all periodic orbits
- Livsic's theorem: there exists u: M → ℝ differentiable along the direction of Φ such that w_H − 1 = X_Φ · u
- let $\mathcal{H}_0: x \mapsto \Psi^{-u(x)} \circ \mathcal{H}(x)$; then flow conjugacy:

$$\mathcal{H}_0 \circ \Phi^t = \Psi^t \circ \mathcal{H}_0, \quad \forall t \in \mathbb{R}$$

Lyapunov exponents of periodic orbits of Φ and Ψ are all equal to h_{top}(Φ) = h_{top}(Ψ) = h
 → de la Llave ('92): H₀ is in fact C^{k-ε}, for any ε > 0

A few more details on the proof

1) Periodic Lyapunov exponents when MME = SRB

 Φ transitive Anosov flow

Proposition

• $p: M \to \mathbb{R}$ Hölder continuous \rightsquigarrow unique equilibrium state μ_p :

$$P_p := \sup_{\Phi_*\mu=\mu} \left(h_\mu(\Phi) + \int_M p \, d\mu
ight) = h_{\mu_p}(\Phi) + \int_M p \, d\mu_p$$

• SRB measure: eq. state associated for the geometric potential

$$p^{u}: x \mapsto -\frac{d}{dt}|_{t=0} \log J^{u}_{x}(t),$$

 $J^u_x(t)$: Jacobian of $D\Phi^t \colon E^u(x) \to E^u(\Phi^t(x))$; pressure: $P_{p^u} = 0$

• MME: unique eq. state for $p = \underline{0}$; pressure: $P_{\underline{0}} = h_{top}(\Phi)$

1) Periodic Lyapunov exponents when MME = SRB

Definition (Rectangle, proper family)

• $R \subset M$ is a rectangle if there is a closed codimension one disk $D \subset M$ transverse to Φ such that $R \subset D$, and for any $x, y \in R$,

 $[x, y]_R := D \cap \mathcal{W}^{cs}_{\Phi, \mathrm{loc}}(x) \cap \mathcal{W}^{cu}_{\Phi, \mathrm{loc}}(y) \in R$

• For any rectangle R and any $x \in R$, we let

 $\mathcal{W}_{R}^{s}(x) := R \cap \mathcal{W}_{\Phi, \mathrm{loc}}^{cs}(x), \quad \mathcal{W}_{R}^{u}(x) := R \cap \mathcal{W}_{\Phi, \mathrm{loc}}^{cu}(x)$

• $\mathcal{R} = \{R_1, \dots, R_m\}$ is a proper family of size $\varepsilon > 0$ if • $M = \{\Phi^t(S) : t \in [-\varepsilon, 0]\}$, where $S := R_1 \cup \dots \cup R_m$ • diam $(R_i) < \varepsilon$, for each $i = 1, \dots, m$ • for any $i \neq j$, $D_* \cap \{\Phi^t(D_{\dagger}) : t \in [0, \varepsilon]\} = \emptyset$ for $\{*, \dagger\} = \{i, j\}$ • Poincaré map $\mathcal{F} : S \to S$, $x \mapsto \Phi^{\tau(x)}(x)$, where $\tau : S \to \mathbb{R}_+$ first

return time on ${\cal S}$

1) Periodic Lyapunov exponents when MME = SRB A proper family $\mathcal{R} = \{R_1, ..., R_m\}$ is called a Markov family if for any $x \in int(R_i) \cap \mathcal{F}^{-1}(int(R_j)), i, j \in \{1, ..., m\}$, we have $\mathcal{W}_{R_i}^s(x) \subset \overline{\mathcal{F}^{-1}(\mathcal{W}_{R_i}^s(\mathcal{F}(x)))}$ and $\overline{\mathcal{F}(\mathcal{W}_{R_i}^u(x))} \supset \mathcal{W}_{R_i}^u(\mathcal{F}(x))$

Theorem

A transitive Anosov flow has a Markov family of arbitrary small size

1) Periodic Lyapunov exponents when MME = SRB

Proposition

Two equilibrium states μ_{p_1} and μ_{p_2} associated to Hölder potentials $p_1, p_2: M \to \mathbb{R}$ coincide if and only if for any Markov family \mathcal{R} ,

$$G_i: x \mapsto \int_0^{\tau(x)} p_i(\Phi^t(x)) dt - P_{p_i} \times \tau(x), \qquad i=1,2,$$

are cohomologous on the cross section S, i.e., there exists a Hölder continuous function $u: S \to \mathbb{R}$ such that

$$G_2(x) - G_1(x) = u \circ \mathcal{F}(x) - u(x), \quad \forall x \in S$$

Alternatively, when Φ is a topologically mixing Anosov flow \rightsquigarrow Margulis construction for the MME:

• family of measures ν^{cu}/ν^{s} defined on leaves of $\mathcal{W}^{cu}_{\Phi}/\mathcal{W}^{s}_{\Phi}$

•
$$(\Phi^t)_* \nu^{cu} = e^{h_{top}(\Phi)t} \nu^{cu}$$
, $(\Phi^t)_* \nu^s = e^{-h_{top}(\Phi)t} \nu^s$

• MME:
$$d\mu = d
u^{\mathsf{cu}} \otimes d
u^{\mathsf{s}}$$

- $x_{\infty} \longleftrightarrow \ldots 0001000\ldots$: homoclinic point
- sequence $(h_n)_{n\geq 0}$ of periodic orbits in the horseshoe:

$$h_n \longleftrightarrow \dots |\underbrace{0 \dots 0}_{n+1} 1| \underbrace{0 \dots 0}_{n+1} 1| \underbrace{0 \dots 0}_{n+1} 1| \dots x_n^1 \longleftrightarrow \dots |0 \dots 0 \underbrace{0 \dots 0 1}_{\uparrow} |0 \dots 0 1| \dots$$

• x is a saddle fixed point, with eigenvalues 0 $<\lambda<1<\lambda^{-1}$

• near $x \in S$, $\exists C^k$ change of coordinates R such that

$$R \circ \mathcal{F} \circ R^{-1} = N \colon (\xi, \eta) \mapsto (\Delta(\xi\eta)\xi, \Delta(\xi\eta)^{-1}\eta),$$

for some C^k function $\Delta(z) = \lambda + a_1 z + \dots$

Proposition (De Simoi-L.-Vinhage-Yang)

As $n \to +\infty$, we have the asymptotic expansion

$$tr(D\mathcal{F}_{x_{n}^{n}}^{n+2}) = C_{0}\lambda^{-n} + nC_{1}a_{1} + O(1)$$

where $C_0, C_1 \in \mathbb{R}^*$ are nonzero constants

How to identify periodic orbits $(h_n)_{n\geq 0}$ in Birkhoff coordinates?

Lemma

The conjugacy R can be chosen in such a way that for $n \gg 1$,

$$R(x_n^1) = (\eta_n, \xi_n) \in \Gamma_1, \qquad R(x_n^2) = (\xi_n, \eta_n) \in \Gamma_2,$$

where $\Gamma_1, \Gamma_2 = \text{Graph}(\gamma)$ are two smooth arcs which are mirror images of each other under the reflection with respect to $\{\xi = \eta\}$

• let (ξ_n, η_n) be the coordinates of the point $R(x_n^2)$ on Γ_2 :

$$\begin{cases} \xi_n = \gamma(\eta_n) \\ \eta_n = \Delta(\xi_n \eta_n)^n \xi_n = \Delta(\gamma(\eta_n) \eta_n)^n \gamma(\eta_n) \end{cases}$$

replace dynamics with N and a gluing map G = R ∘ F² ∘ R⁻¹
tr(DFⁿ⁺²_{x_n}) = tr(D(Nⁿ ∘ G)_{(ηn,ξn})) = tr(DNⁿ_{(ξn,ηn})DG_{(ηn,ξn})):

$$DN_{(\xi_n,\eta_n)} = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix} - 2\lambda^{-2}\xi_{\infty}^2 a_1 \begin{bmatrix} O(\lambda^n) & O(1) \\ O(\lambda^{2n}) & \lambda^n + O(n\lambda^{2n}) \end{bmatrix}$$
$$D\mathcal{G}_{(\eta_n,\xi_n)} = \begin{bmatrix} \gamma_1(2-\gamma_1g_0) & \gamma_1g_0 - 1 \\ 1-\gamma_1g_0 & g_0 \end{bmatrix} + O(\lambda^n)$$

- let $\mathcal{L}^{(0)} = \mathcal{L}(x) > 0$ be the period of x for Φ
- for any $n \ge 0$, let $\mathcal{L}_n = \mathcal{L}(x_n^1) > 0$ be the period of x_n^1 for Φ

Lemma

For some $\mathcal{L}^{(1)} \in \mathbb{R}$, we have the following asymptotic expansion:

$$\mathcal{L}_n = n\mathcal{L}^{(0)} + \mathcal{L}^{(1)} + O(\lambda^n)$$

 \rightsquigarrow linearize the dynamics through a map Ψ

Forlow's approach for contact Ansov flows (F^b)_{tER} C^{oo} Ansor flow on M: $TM = E^{S} \oplus RX \oplus E^{m}$ $(\mathbf{J}_{\mathbf{a}})_{\mathbf{a}} = (\mathbf{J}_{\mathbf{a}})_{\mathbf{a}} = (\mathbf{J}_{\mathbf{a}})_{\mathbf{a}}$ $\begin{cases} E^{S} \oplus E^{m} = ke_{n} \propto \\ \alpha(k) = 1 \end{cases}$ Canonical invariant 1-from & on TM: If and a = a volume form, we say that a is a contact form $m_{s}\left(\overline{f}^{6}\right)_{t} \quad \frac{\text{Rech}/\text{contact flow}}{\left(\alpha(X, \cdot) \equiv 0, \alpha(X) \equiv 1\right)}$ • DIM (M) = 3 : $E^{cs} = E^{s} \oplus R^{s}$, $E^{cm} = R^{s} \oplus E^{m}$ • DIM(M) = 3 + CONTACT FLOW : Splitting (f) is C' dunne : if MME is in the lebosque dess, the Margulis mostres V, V are livesque measure : I densities f^s, f^{cn} s.t. $dy^{S} = \int^{S} d\lambda^{S}$, $dy^{Cm} = \int^{Cm} d\lambda^{Cm}$

By invanina of E^{5} , E^{m} , \exists positive function $p \in C'(M \times \mathbb{R}, \mathbb{R})$ s.t.
$\frac{d(\lambda^{s_e} \overline{\phi^{t}})}{d(\lambda^{s})} = \mu^{-1}(\cdot, t),$
and then, leb. a.e., the following homological equation is satisfied:
$ \begin{aligned} \int \cdot \cdot$
Livsic $f^{S} = b f^{n} \text{some function } b \in C^{1}(M, R_{+})$
Building à local algebraic structure :
(1) $C' - (SL(2, \mathbb{R}), SL(2, \mathbb{R})) - structure :$
3, 3 ⁿ C'unit weater fields tongent to the leaves of W, 25 ⁿ
• $X_{s}^{S} := b^{-1} 3^{S}, X_{s}^{M} := b^{-1} 3^{N}$
· ·

 \mathcal{L}_{immo} : $\left[X, X^{n}\right] = -h X^{n}$ $\begin{bmatrix} X, X^{S} \end{bmatrix} = h X^{S}, \quad \begin{bmatrix} X^{S}, X^{m} \end{bmatrix} = -X \quad \begin{pmatrix} G \end{pmatrix}$ top entropy (m, pt, ps, pn associated flows) $\frac{d \operatorname{Ft}(X^{m}(n))}{b(x)} = b(x) \mu(x,t) \operatorname{Ft}(u) = \frac{b(n)}{b(\operatorname{Ft}(u))} \mu(x,t) \operatorname{Ft}(u)$ $= e^{ht} X^{m} \left(\overline{\Phi}^{t} \left(a \right) \right) \quad \text{ite.} \quad \blacksquare$ Lt X, X, X, X, 3 left invariant vector fields over SL(2, R) satisfying (G) ~ It, Is, Im associated flows Lemma: $\forall n \in M$, $\exists \epsilon > 0$ s.t. the open nighborhood $U_{\epsilon} \ni fidf in SL(2, n)$ $U_{\Sigma} = d_{\Sigma} \in SL(E, \mathbb{N}) : \mathcal{J} = exp(E_{\Sigma}) exp(E_{\Sigma} X_{o}^{S}) exp(E_{m} X_{o}^{m}), t, t_{s}, t_{m} \in (-\Sigma, \Sigma)^{2}$

Satisfier that the map $F: g = e^{tx_0} e^{tx_0} e^{tx_0} + \overline{f_n} \cdot \overline{f_s} \cdot f_s$
is a C'local diffeomorphism from U to VCM and conjugats:
(i) for and I's (iii) for and I'r
~ locd C'- (SL(Z, R), SL(Z, R)) - Structure
E Glabal algebraic structure
3 C' conjugacy - Co conjugacy - de la Llave- Marco- Monyon.

Delated realts for dispersing billiands

Dispersing billiards

Billiard map \mathcal{F} : $(s, \varphi) \mapsto (s', \varphi')$

Sinai billiards

- Sinai billiard $\mathcal{D} = \mathbb{T}^2 \setminus \cup_{i=1}^m \mathcal{O}_i$, with $\mathcal{O}_1, \dots, \mathcal{O}_m$ convex, \mathcal{C}^∞
- finite horizon: no trajectory makes only tangential collisions
- smooth invariant SRB proba. measure $\mu = \frac{1}{2|\partial D|} \cos \varphi \, ds d\varphi$

Sinai billiards

- \bullet grazing collisions \rightsquigarrow billiard map ${\mathcal F}$ has singularities
- Baladi-Demers: notion of topological entropy h_* for ${\mathcal F}$
- $\varphi_0 \in \mathbb{R}$ close to $\pi/2 \rightsquigarrow \varphi_0$ -grazing collisions
- n₀ ∈ N, s₀ = s₀(φ₀, n₀) ∈ (0, 1] smallest such that any orbit of length n₀ has at most s₀n₀ many φ₀-grazing collisions

Assume that for some φ_0 , n_0 , it holds

$$h_* > s_0 \log 2$$

Theorem (Baladi-Demers, '18)

- the map \mathcal{F} has a unique invariant Borel probability measure μ_* of maximal entropy, i.e., $h_{\mu_*}(\mathcal{F}) = h_*$
- if the MME μ_{*} is equal to the SRB measure μ, then all the regular periodic orbits have the same Lyapunov exponent, i.e.,

 $LE(\sigma) = h_*$, for any regular periodic orbit σ

Rigidity, Sinai billiards

Theorem (De Simoi-L.-Vinhage-Yang, '20)

If the MME $\mu_* = \text{volume } \mu$, then for any regular periodic orbit \mathcal{O} with a homoclinic intersection ($\exists x_{\infty} \in \mathcal{W}_{\mathcal{F}}^{s}(x) \pitchfork \mathcal{W}_{\mathcal{F}}^{u}(x), x \in \mathcal{O}$), the associated Birkhoff Normal Form is linear Dispersing billiards, homoclinic orbits

- non-eclipse condition
- $\sigma = 12$: period-two orbit between two obstacles $\mathcal{O}_1, \mathcal{O}_2$
- $h_{\infty} = \ldots 1212321212\ldots$: homoclinic bouncing once on \mathcal{O}_3

Dispersing billiards, homoclinic orbits

- non-eclipse condition
- $\sigma = 12$: period-two orbit between two obstacles $\mathcal{O}_1, \mathcal{O}_2$
- $h_n = 32 \underbrace{12 \dots 12}_{2n}$: sequence of shadowing periodic orbits

Sinai billiards

- x point in a regular periodic orbit, N Birkhoff Normal Form at x
- $(h_n)_{n\geq 0}$ sequence of periodic orbits as above

Lemma (De Simoi-L.-Kaloshin)

There exists a sequence of real numbers $(L_{q,p})_{\substack{p=0,\cdots,+\infty\\q=0,\cdots,p}}$ such that

$$2\lambda^n \cosh((n+2) \operatorname{LE}(h_n)) = \sum_{p=0}^{+\infty} \sum_{q=0}^{p} L_{q,p} n^q \lambda^{np}$$

• Assume that the MME μ_* is equal to the SRB measure μ \Rightarrow (Baladi-Demers) for any integer $n \ge 0$, we have

 $LE(h_n) = h_* > 0$, h_* topological entropy

- $\Rightarrow L_{q,p} = 0$, for all $(q,p) \neq (0,0), (0,2)$
- \Rightarrow the Birkhoff Normal Form N is linear

Sinai billiards

- x point in a regular periodic orbit, N Birkhoff Normal Form at x
- $(h_n)_{n\geq 0}$ sequence of periodic orbits as above

Lemma (De Simoi-L.-Kaloshin)

There exists a sequence of real numbers $(L_{q,p})_{\substack{p=0,\cdots,+\infty\\q=0,\cdots,p}}$ such that

$$2\lambda^n \cosh((n+2) \operatorname{LE}(h_n)) = \sum_{p=0}^{+\infty} \sum_{q=0}^{p} L_{q,p} n^q \lambda^{np}$$

• Assume that the MME μ_* is equal to the SRB measure μ \Rightarrow (Baladi-Demers) for any integer $n \ge 0$, we have

 $LE(h_n) = h_* > 0$, h_* topological entropy

- $\Rightarrow L_{q,p} = 0$, for all $(q,p) \neq (0,0), (0,2)$
- \Rightarrow the Birkhoff Normal Form N is linear