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Anosov Flows

(M, g): smooth compact Riemannian manifold

� = (�
t
)tœR: C2

flow on M
X� : x ‘æ d

dt |t=0�
t
(x): flow vector field

Recall that � Anosov if TM = E s
� ü RX� ü Eu

�, and for C , ⁄ > 0:

ÎDx�
t · vÎ Æ Ce≠⁄tÎvÎ, ’ x œ �, v œ E s

�(x), t Ø 0

ÎDx�
≠t · vÎ Æ Ce≠⁄tÎvÎ, ’ x œ �, v œ Eu

�(x), t Ø 0

Notation: E cs
� := E s

� ü RX�, E cu
� := Eu

� ü RX�
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Anosov Flows

suspensions of Anosov di�eomorphisms:

e.g. for the cat map A =

C
2 1

1 1

D

on T2
:= R2/Z2

 flow (x , s) ‘æ (x , s + t) on T2 ◊ R/ ≥, (x , 1) ≥ (A · x , 0)

geodesic flows on negatively curved Riemannian manifolds

surgeries  new examples (Handel-Thurston, Goodman...)
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Algebraic systems

• Algebraic systems: “a�ne systems on homogeneous spaces”

G Lie group

K µ G compact subgroup

� µ G discrete cocompact subgroup (uniform lattice)

M = �\G/K homogeneous

algebraic flow � = (�
t
)tœR on M:

�
t
: �gK ‘æ �g exp(t–)K , with – in the Lie algebra of G

• � algebraic Anosov flow on a 3-mfd:

Tomter (’68)  up to finite cover,

geodesic flow of a surface of constant negative curvature

suspension of a hyperbolic automorphism of T2
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Anosov flows

• Anosov di�eomorphisms: conjecturally, up to topological

conjugacy, algebraic models account for all Anosov di�eomorphisms

• Anosov flows  rich behavior:

Franks-Williams (’80): there exists a closed connected

3-manifold M which admits a non-transitive Anosov flow

Handel-Thurston (’80): there exists a compact 3-manifold M
which admits an analytic non-algebraic Anosov flow

Foulon-Hasselblatt (’13): there exists a hyperbolic 3-manifold

M which admits a contact Anosov flow that is not

topologically orbit equivalent to an algebraic flow

Bonatti-Béguin-Yu (’14): 3-manifolds supporting both

transitive and non-transitive Anosov flows...
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Locally symmetric spaces, Katok’s conjecture
(M, g): CŒ

smooth compact Riemannian manifold

geodesic symmetry at x œ M: sx := expx ¶(≠IdTx M) ¶ exp
≠1
x

(M, g) locally symmetric if sx is an isometry for all x œ M

Conjecture (Katok Entropy Conjecture)

(M, g): connected Riemannian manifold of negative curvature
�: geodesic flow, µ: Liouville measure

Then htop(�) = hµ(�) ≈∆ (M, g) is locally symmetric

Theorem (Katok, ’82)

(S, g): negatively curved surface
�: geodesic flow, µ: Liouville measure

Then htop(�) = hµ(�) ≈∆ (S, g) has constant < 0 curvature
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Natural invariant measures

� transitive Anosov flow on a compact Riemannian manifold M

unique invariant proba. ‹ such that htop(�) = h‹(�):

measure of maximal entropy (or MME)

unique invariant proba. whose conditionals along unstable

manifolds are absolutely continuous with respect to Lebesgue:

Sinai-Ruelle-Bowen (or SRB) measure

Remark

When � preserves a smooth volume Vol, it is transitive/ergodic,
and SRB measure = Vol

Question

Let � be a CŒ transitive Anosov on a 3-manifold.
If MME = SRB, is � smoothly conjugate to an algebraic flow?

Belgrade Summer School in Dynamics – Martin Leguil 7 / 43



Contact Anosov flows & Foulon’s question

Theorem (Foulon, ’01)

Let � be a contact Anosov flow on a closed 3-manifold.
Then MME = contact volume
≈∆ � is, up to finite cover, smoothly conjugate to geodesic flow
of a metric of constant negative curvature on a closed surface

Question (Foulon)

Let � be a smooth Anosov flow on a 3-manifold which preserves a
smooth volume µ.
If htop(�) = hµ(�), is � smoothly conjugate to an algebraic flow?
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Main result: entropy rigidity for 3D Anosov flows

Positive answer to Foulon’s question:

Theorem (De Simoi-L.-Vinhage-Yang, ’20)

Let k Ø 5 and let � be a Ck Anosov flow on a compact connected
3-manifold M such that �úµ = µ for some smooth volume µ.
Then htop(�) = hµ(�) ≈∆ � is Ck≠Á-conjugate to an algebraic
flow, for Á > 0 arbitrarily small
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Rigidity: high regularity phenomenon

Remark

Parry’s synchronization procedure (’86):
�: C2 Axiom A flow on a compact Riemannian manifold
�: attractor whose unstable distribution is C1

 there exists a C1 time change such that for the new flow, the
SRB measure of the attractor coincides with the MME
 for any C2

transitive Anosov flow � on a 3-manifold:

� is C1
-orbit equivalent to an Anosov flow for which the SRB

measure is equal to the MME

Remark

Adeboye-Bray-Constantine (’19): there exist systems with more
geometric structure that still exhibit rigidity in low regularity
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Entropy rigidity for Anosov flows

Some ingredients of the proof:

1 equality of periodic Lyapunov exponents when MME = SRB

2 expansion of Lyapunov exponents of some periodic orbits with

prescribed combinatorics (Birkho� Normal Form)

3 Anosov cocycle/class and smoothness of the invariant

foliations, connection with the BNF (after Hurder-Katok)

4 orbit equivalence to algebraic flow when smooth weak

stable/unstable foliations (after Ghys)

5 from orbit equivalence to flow conjugacy
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1) Periodic Lyapunov exponents when MME = SRB
M: CŒ

compact Riemannian 3-manifold

� : M æ M conservative Ck
Anosov flow, k Ø 2

for any periodic orbit O = {�
t
(x)}t of period

L(O) = L(x) > 0, the Lyapunov exponent of O is

LE(O) = LE(x) =
1

L(x)
log Ju

x (L(x)),

where Ju
x (t): Jacobian of D�

t
: Eu

(x) æ Eu
(�

t
(x))

Proposition (De Simoi-L.-Vinhage-Yang)

If SRB measure = MME, then for any periodic orbit O:

LE(O) = htop(�)

Equivalently, for any x œ O:

Ju
x (L(x)) = ehtop(�)L(x)
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Birkho� Normal Form (BNF)
let F be a local CŒ

conservative surface di�eomorphism

x = F q
(x) hyperbolic periodic point

0 < ⁄ < 1 < ⁄≠1
: eigenvalues of DF q

x
(Moser)-Sternberg linearization:
there exists a local CŒ

volume-preserving map R which conjugates

F q
to its Birkho� Normal Form N = R ¶ F q ¶ R≠1

:

N = N� : (›, ÷) ‘æ (�(›÷) · ›, �(›÷)
≠1 · ÷)

for some function � : z ‘æ ⁄ + a1z + a2z2
+ . . .
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2) Expansion of periodic Lyapunov exponents (BNF)

M: CŒ
smooth compact Riemannian 3-manifold

let � : M æ M be a Ck
Anosov flow, k Ø 2

�úµ = µ for some smooth volume measure µ

Markov family R for � with cross section S

Belgrade Summer School in Dynamics – Martin Leguil 18 / 43



2) Expansion of periodic Lyapunov exponents (BNF)

F : Poincaré map induced by � on the cross section S
x œ S: periodic point of period L(x) > 0

xŒ œ S: homoclinic point (xŒ œ Wcs
� (x) tWcu

� (x))
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2) Expansion of periodic Lyapunov exponents (BNF)

xŒ Ωæ . . . 0001
ø

000 . . . : homoclinic point

sequence (hn)nØ0 of periodic orbits in the horseshoe:

hn Ωæ . . . | 0 . . . 0¸ ˚˙ ˝
n+1

1| 0 . . . 0¸ ˚˙ ˝
n+1

1| 0 . . . 0¸ ˚˙ ˝
n+1

1| . . .

x1
n Ωæ . . . |0 . . . 00

ø

1|0 . . . 01| . . .
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2) Expansion of periodic Lyapunov exponents (BNF)

x is a saddle fixed point, with eigenvalues 0 < ⁄ < 1 < ⁄≠1

near x œ S, ÷ Ck
change of coordinates R such that

R ¶ F ¶ R≠1
= N : (›, ÷) ‘æ (�(›÷)›, �(›÷)

≠1÷),

for some Ck
function �(z) = ⁄ + a1z + . . .

 a1 œ R: first Birkho� invariant

Proposition (De Simoi-L.-Vinhage-Yang)

As n æ +Œ, we have the asymptotic expansion

tr(DFn+2
x1n

) = C0⁄≠n
+ nC1a1 + O(1)

where C0, C1 œ Rú are nonzero constants
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2) Expansion of periodic Lyapunov exponents (BNF)
let L(0)

= L(x) > 0 be the period of x for �

for any n Ø 0, let Ln = L(x1
n ) > 0 be the period of x1

n for �

Lemma

For some L(1) œ R, we have the following asymptotic expansion:

Ln = nL(0)
+ L(1)

+ O(⁄n
)

Lemma

If MME = SRB measure, then for each n Ø 0, the eigenvalues of
DFn+2

x1n
are equal to e±htop(�)Ln

Corollary

If MME = SRB measure, then

tr(DFn+2
x1n

) = C≠1
Œ ⁄≠n

+ O(1), CŒ := ehtop(�)L(1)
> 0
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2) Expansion of periodic Lyapunov exponents (BNF)

Lemma

tr(DFn+2
x1n

) = C0⁄≠n
+ nC1a1 + O(1), where C0, C1 ”= 0

if MME = SRB measure, then

tr(DFn+2
x1n

) = C≠1
Œ ⁄≠n

+ O(1), CŒ := ehtop(�)L(1)
> 0

Corollary (De Simoi-L.-Vinhage-Yang)

If MME = SRB measure, then for any periodic orbit O, the first
Birkho� invariant at O of the Poincaré map F vanishes

Belgrade Summer School in Dynamics – Martin Leguil 23 / 43



3) Anosov cocycle/class (after Hurder-Katok)

� : M æ M conservative Ck
Anosov flow, k Ø 2

Definition (Cocycle/coboundary)

C : M ◊ R æ R is a C1 cocycle over � if it is of class C1 and

C(x , t + s) = C(x , t) + C(�
t
(x), s), ’ x œ M, ’ t, s œ R

a C1 cocycle B : M ◊ R æ R over � is a C1 coboundary if
there exists a C1 function u : M æ R such that

B(x , t) = u ¶ �
t
(x) ≠ u(x), ’ x œ M, ’ t œ R

C1-cohomology class of a C1 cocycle C : M ◊ R æ R: image
of C in the group of C1 cocycles over � modulo coboundaries
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3) Anosov cocycle/class (after Hurder-Katok)

the invariant foliations Wcs
� , Wcu

� are C1

Anosov cocycle A� : M ◊ R æ R
Anosov class [A�]: “obstruction to upgraded regularity of the

invariant foliations”

for any x in a periodic orbit O of period L(O) = L(x) > 0,

A�(x , L(x)) = ≠⁄≠1a1,

where 0 < ⁄ < 1 < ⁄≠1
are the eigenvalues of Poincaré map,

and a1 = a1(O) is the first Birkho� invariant
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Anosov cocycle & Normal forms
Lotus restrict ourselves to Smooth ace -

puer ving
Anosov dffeomophimsof.IT?RYz2

De Latte : J local Smooth Coordinator Systems awmd each point p Kat depends
continuonsty ( actually C

'

) on the point p which brings the difféomorphisme into the

Moser Normal Forme f- : ( y) ↳ [À
" QÀ "D) §

'
.

_%)
Xp y qplniy )

(n , y) : local cardinales anomal the point p / ↳ conduites anomal the image of p

Qp (my ) : corresponds to the resonance Jp I j
'
=\ f- aura -

poser ration)
f and mon generally to the fandy of resonance 7J

"

X-p
"

,
ne Z

as Smooth

as f + qp = ^



Lit m now assume that
p = periodic point of a flow

Lake a local cross - section Y at p
and consider Ite Poincaré

nop F on Y

- f- : Normal Frm off
ami

p

>
y

<

<

[
"

xyEItnDi-XiKpniai@YL.y) )→

df@ip-hyTe.Gy ) rayé(g) + aqcxy)
j

'
o

fr a
-a - df (%) = ↳ joie, a) , ✗ c- GD .



vs unstable direction et @ , y) is Spaniel by a vector ¢, acy))
for some function a : R→ R .

By invariance of the unstable direction mdr df , and since f4, g) = §, >y )
j

'
a

dfo.pt/ayD--f.jg* a) (%) _ Ème * (Iep)
⇒ a g) = Kylie

'
+X a (A)

If Ite unstable bundle is C
"

, diffamtiatig (A) furie with repeat by at o :

(a is (2)
ous Y'a "@ ) = 272g '@ | + Ha "@
i.e . Q

'

= 0 !
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3) Anosov cocycle/class (after Hurder-Katok)

� : M æ M a Ck
Anosov flow on some 3-manifold M, k Ø 5

�úµ = µ for some smooth volume µ

Theorem (Hurder-Katok, ’90)

The following properties are equivalent:
the Anosov class [A�] vanishes
for any periodic orbit O, a1(O) = 0

the weak stable/weak unstable distributions E cs
� /E cu

� are Ck≠3
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4) Orbit equivalence to algebraic flow (after Ghys)

� : M æ M a Ck
Anosov flow on some 3-manifold M, k Ø 5

�úµ = µ for some smooth volume µ

Theorem (Ghys, ’93)

If Wcu
� and Wcs

� are of class C1,1, then � is Ck -orbit equivalent to
an algebraic flow

Corollary (De Simoi-L.-Vinhage-Yang)

If htop(�) = hµ(�), then
1 [A�] = 0

2 E cs
� /E cu

� are of class Ck≠3

3 � is Ck -orbit equivalent to an algebraic model
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5) From orbit equivalence to flow conjugacy

� : M æ M a Ck
Anosov flow on some 3-manifold M, k Ø 5

�úµ = µ for some smooth volume µ

Ghys (’87): examples of analytic Anosov flows orbit equivalent

but not conjugate to an algebraic model

Theorem (De Simoi-L.-Vinhage-Yang)

If MME = µ, then for any Á > 0, � is Ck≠Á conjugate to an
algebraic flow
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5) From orbit equivalence to flow conjugacy

assume that MME = µ (µ smooth �-invariant volume)

up to Ck
conjugacy, � is a time change of an algebraic flow �

linear time change: htop(�) = htop(�) = h > 0

x œ M point in some periodic orbit O:

period L�(O) = L�(x) > 0 for �

period L�(O) = L�(x) > 0 for �

as MME = µ, for any periodic point x œ M,

Ju
�,x (L�(x)) = ehL�(x)

Ju
�,x (L�(x)) = ehL�(x)

as � is a time change of �, same periodic eigenvalues

∆ for any periodic orbit O, L�(O) = L�(O)
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5) From orbit equivalence to flow conjugacy

let H be a Ck
orbit equivalence between � and �:

X� · H(x) = wH(x)X�(H(x)), ’ x œ M

 wH : M æ R measures “speed" of H along flow direction

wH ≠ 1 integrates to 0 over all periodic orbits

Livsic’s theorem: there exists u : M æ R di�erentiable along

the direction of � such that wH ≠ 1 = X� · u
let H0 : x ‘æ �

≠u(x) ¶ H(x); then flow conjugacy:

H0 ¶ �
t

= �
t ¶ H0, ’ t œ R

Lyapunov exponents of periodic orbits of � and � are all

equal to htop(�) = htop(�) = h
 de la Llave (’92): H0 is in fact Ck≠Á

, for any Á > 0
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it few more details on the proof



1) Periodic Lyapunov exponents when MME = SRB

� transitive Anosov flow

Proposition

• p : M æ R Hölder continuous  unique equilibrium state µp:

Pp := sup
�úµ=µ

1
hµ(�) +

⁄

M
p dµ

2
= hµp (�) +

⁄

M
p dµp

• SRB measure: eq. state associated for the geometric potential

pu
: x ‘æ ≠ d

dt |t=0 log Ju
x (t),

Ju
x (t): Jacobian of D�

t
: Eu

(x) æ Eu
(�

t
(x)); pressure: Ppu = 0

• MME: unique eq. state for p = 0; pressure: P0 = htop(�)
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1) Periodic Lyapunov exponents when MME = SRB
Definition (Rectangle, proper family)

• R µ M is a rectangle if there is a closed codimension one disk
D µ M transverse to � such that R µ D, and for any x , y œ R,

[x , y ]R := D fl Wcs
�,loc(x) fl Wcu

�,loc(y) œ R

• For any rectangle R and any x œ R, we let

Ws
R(x) := R fl Wcs

�,loc(x), Wu
R(x) := R fl Wcu

�,loc(x)

• R = {R1, . . . , Rm} is a proper family of size Á > 0 if
1 M = {�

t
(S) : t œ [≠Á, 0]}, where S := R1 fi · · · fi Rm

2 diam(Ri) < Á, for each i = 1, . . . , m
3 for any i ”= j , Dú fl {�

t
(D†) : t œ [0, Á]} = ÿ for {ú, †} = {i , j}

• Poincaré map F : S æ S, x ‘æ �
·(x)

(x), where · : S æ R+ first
return time on S
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1) Periodic Lyapunov exponents when MME = SRB
A proper family R = {R1, . . . , Rm} is called a Markov family if

for any x œ int(Ri) fl F≠1
(int(Rj)), i , j œ {1, . . . , m}, we have

Ws
Ri (x) µ F≠1(Ws

Rj (F(x))) and F(Wu
Ri (x)) ∏ Wu

Rj (F(x))

Theorem

A transitive Anosov flow has a Markov family of arbitrary small size
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1) Periodic Lyapunov exponents when MME = SRB

Proposition

Two equilibrium states µp1 and µp2 associated to Hölder potentials
p1, p2 : M æ R coincide if and only if for any Markov family R,

Gi : x ‘æ
⁄ ·(x)

0
pi(�

t
(x))dt ≠ Ppi ◊ ·(x), i = 1, 2,

are cohomologous on the cross section S, i.e., there exists a Hölder
continuous function u : S æ R such that

G2(x) ≠ G1(x) = u ¶ F(x) ≠ u(x), ’ x œ S
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1) Periodic Lyapunov exponents when MME = SRB

Alternatively, when � is a topologically mixing Anosov flow

 Margulis construction for the MME:

family of measures ‹cu
/‹s

defined on leaves of Wcu
� /Ws

�
(�

t
)ú‹cu

= ehtop(�)t‹cu
, (�

t
)ú‹s

= e≠htop(�)t‹s

MME: dµ = d‹cu ¢ d‹s
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2) Expansion of periodic Lyapunov exponents (BNF)

xŒ Ωæ . . . 0001
ø

000 . . . : homoclinic point

sequence (hn)nØ0 of periodic orbits in the horseshoe:

hn Ωæ . . . | 0 . . . 0¸ ˚˙ ˝
n+1

1| 0 . . . 0¸ ˚˙ ˝
n+1

1| 0 . . . 0¸ ˚˙ ˝
n+1

1| . . .

x1
n Ωæ . . . |0 . . . 00

ø

1|0 . . . 01| . . .
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2) Expansion of periodic Lyapunov exponents (BNF)

x is a saddle fixed point, with eigenvalues 0 < ⁄ < 1 < ⁄≠1

near x œ S, ÷ Ck
change of coordinates R such that

R ¶ F ¶ R≠1
= N : (›, ÷) ‘æ (�(›÷)›, �(›÷)

≠1÷),

for some Ck
function �(z) = ⁄ + a1z + . . .

Proposition (De Simoi-L.-Vinhage-Yang)

As n æ +Œ, we have the asymptotic expansion

tr(DFn+2
x1n

) = C0⁄≠n
+ nC1a1 + O(1)

where C0, C1 œ Rú are nonzero constants
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2) Expansion of periodic Lyapunov exponents (BNF)
How to identify periodic orbits (hn)nØ0 in Birkho� coordinates?

Lemma

The conjugacy R can be chosen in such a way that for n ∫ 1,

R(x1
n ) = (÷n, ›n) œ �1, R(x2

n ) = (›n, ÷n) œ �2,

where �1, �2 = Graph(“) are two smooth arcs which are mirror
images of each other under the reflection with respect to {› = ÷}
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2) Expansion of periodic Lyapunov exponents (BNF)

let (›n, ÷n) be the coordinates of the point R(x2
n ) on �2:

I
›n = “(÷n)

÷n = �(›n÷n)
n›n = �(“(÷n)÷n)

n“(÷n)

replace dynamics with N and a gluing map G = R ¶ F2 ¶ R≠1

tr(DFn+2
x1n

) = tr(D(Nn ¶ G)(÷n,›n)) = tr(DNn
(›n,÷n)DG(÷n,›n)):

DN(›n,÷n) =

C
⁄ 0

0 ⁄≠1

D

≠ 2⁄≠2›2
Œa1

C
O(⁄n

) O(1)

O(⁄2n
) ⁄n

+ O(n⁄2n
)

D

DG(÷n,›n) =

C
“1(2 ≠ “1g0) “1g0 ≠ 1

1 ≠ “1g0 g0

D

+ O(⁄n
)
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2) Expansion of periodic Lyapunov exponents (BNF)
let L(0)

= L(x) > 0 be the period of x for �

for any n Ø 0, let Ln = L(x1
n ) > 0 be the period of x1

n for �

Lemma

For some L(1) œ R, we have the following asymptotic expansion:

Ln = nL(0)
+ L(1)

+ O(⁄n
)

 linearize the dynamics through a map �
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tonton ' s approach for contact Anosov flows
☒ b)

+ ep
C Anosov flow on M

:

TM =
Es ⑦ RX ④ En (Y )

Canonical invariant 1- fnmx on TM : Est En = kax{✗ ④ = 1

ff xndx = a volume forme, we soy that x is a contact fon
ms ☒ b) + Reeblontaut flow (dx(× , . ) -= 0,2 =-D

DIM ④=3 : E
"

= Es ⑦ Rx
,

E
"

= RX En C
'

DIM(M ) =3 + CONTACT FLOW : spliting (8) à C
'

Lemna
: if MME is in the Lebesgue class

,
Ae Margulis mosnes

vs
,
r
"

au

Lebesgue mansus : 3- densités fs, f
"
s.t.

drs
= f
'

das
,
di? fonda

"



By in ranima of É, E
"

,
7 positive function p E C

'

@ ✗ R
,
R) sit .

dise #-)
dis

= f-
'

( • , t) ,
and Iten

,
Loeb

.
a. e.
,
Ite following homologie gratin is satisfied :

f ! Et@ = e-
"

plait .

Fu
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Related result for dis puimy billiards



Dispersing billiards

Billiard map F : (s, Ï) ‘æ (s Õ, ÏÕ
)
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Sinai billiards
Sinai billiard D = T2 \ fim

i=1Oi , with O1, . . . , Om convex, CŒ

finite horizon: no trajectory makes only tangential collisions

smooth invariant SRB proba. measure µ =
1

2|ˆD|
cos Ï dsdÏ
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Sinai billiards
grazing collisions  billiard map F has singularities

Baladi-Demers: notion of topological entropy hú for F
Ï0 œ R close to fi/2  Ï0-grazing collisions

n0 œ N, s0 = s0(Ï0, n0) œ (0, 1] smallest such that any orbit of

length n0 has at most s0n0 many Ï0-grazing collisions

Assume that for some Ï0, n0, it holds

hú > s0 log 2

Theorem (Baladi-Demers, ’18)

the map F has a unique invariant Borel probability measure
µú of maximal entropy, i.e., hµú(F) = hú

if the MME µú is equal to the SRB measure µ, then all the
regular periodic orbits have the same Lyapunov exponent, i.e.,

LE(‡) = hú, for any regular periodic orbit ‡

Belgrade Summer School in Dynamics – Martin Leguil 13 / 43



Rigidity, Sinai billiards

for F = F billiard map:

Theorem (De Simoi-L.-Vinhage-Yang, ’20)

If the MME µú = volume µ, then for any regular periodic orbit O
with a homoclinic intersection (÷ xŒ œ Ws

F
(x) tWu

F
(x), x œ O),

the associated Birkho� Normal Form is linear

Belgrade Summer School in Dynamics – Martin Leguil 15 / 43
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Dispersing billiards, homoclinic orbits

non-eclipse condition

‡ = 12: period-two orbit between two obstacles O1, O2
hŒ = . . . 1212321212 . . . : homoclinic bouncing once on O3
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Dispersing billiards, homoclinic orbits

non-eclipse condition

‡ = 12: period-two orbit between two obstacles O1, O2
hn = 32 12 . . . 12¸ ˚˙ ˝

2n
: sequence of shadowing periodic orbits
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Sinai billiards
• x point in a regular periodic orbit, N Birkho� Normal Form at x
• (hn)nØ0 sequence of periodic orbits as above

Lemma (De Simoi-L.-Kaloshin)

There exists a sequence of real numbers (Lq,p)p=0,··· ,+Œ

q=0,··· ,p
such that

2⁄n
cosh((n + 2)LE(hn)) =

+Œÿ

p=0

pÿ

q=0
Lq,pnq⁄np

Assume that the MME µú is equal to the SRB measure µ

∆ (Baladi-Demers) for any integer n Ø 0, we have

LE(hn) = hú > 0, hú topological entropy

∆ Lq,p = 0, for all (q, p) ”= (0, 0), (0, 2)

∆ the Birkho� Normal Form N is linear
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