Some notions of smooth ergodic theory

Université de Picardie Jules Verne, Amiens, France

School and Workshop on Ergodic Theory and Parabolic Dynamics IMPAN, Warsaw

Martin Leguil

Main references

- Sylvain Crovisier, Rafael Potrie: Introduction to partially hyperbolic

- Michael Brin, Garrett Stuck: Introduction to dynamical systems. Cambridge University Press, Cambridge, 2002. xii+240 pp.

dynamics (School on Dynamical Systems, ICTP, Trieste, Italy), 2015

• Amie Wilkinson: Smooth ergodic theory, Mathematics of complexity and dynamical systems, Vols. 1-3, 1533-1547, Springer, New York, 2012

• Lai-Sang Young: Ergodic theory of differentiable dynamical systems. Real and complex dynamical systems (Hillerød, 1993), 293–336, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995

Some notions of smooth ergodic theory

Let M be a C^{∞} Riemannian compact connected manifold, with $\partial M = \emptyset$ Let $f: M \to M$ be of class $C^k, k \ge 1$, preserving orientation, such that

 $\forall x \in M, m(Df(x))$

 $\sim f$ local diffeomorphism of degree $d \geq 1$

Goal: describe the statistical behavior of orbits

 $\mathcal{O}_f^+(x) := \{x, j\}$

→ Do empirical measures $\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k(x)}$ converge to a measure $\mu = \mu_{(x)}$?

i.e.,
$$\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \to_{n \to +\infty} \int_{M} \varphi \, d\mu, \quad \forall \varphi \in C^{0}(M, \mathbb{R})$$

Temporal averages
(Birkhoff averages)
Spatial
averages

$$) := \inf_{v \in T_x M \setminus \{0\}} \frac{\|Df(x)v\|}{\|v\|} > 0$$

$$f(x), f^2(x) = f \circ f(x), \dots \}$$

- if so, which properties does the measure μ have?
 - ergodicity: $\forall A \in \mathcal{B}, f^{-1}(A) = A \implies \mu(A) = 0 \text{ or } 1$?
 - mixing: $\forall A, B \in \mathcal{B}, \mu(A \cap f^{-n}(B)) \to_{n \to +\infty} \mu(A)\mu(B)$?
- conversely, given $\mu \in \mathcal{M}_f := \{\nu \text{ Borel probability measure } | f_*\nu = \nu \}$ ($\mathcal{M}_f \neq \emptyset$), which $x \in M$ do follow the statistics of μ ?

in other words, $x \in$

Theorem: (Birkhoff, 32) $\forall \varphi \in L^1(\mu), \exists \varphi^* \in \mathscr{L}^1(\mu)$ such that

with
$$\varphi^* \circ f = \varphi^* \mu$$
-a.e., and $\int_m \varphi^* d\mu = \int_M \varphi d\mu$

 \sim if (f,μ) ergodic, $\varphi^* = \left[\varphi \, d\mu \, \mu$ -a.e., and then μ -a.e. $x \in M$ follows the statistics of $\mu \, (\mu(\mathscr{B}(\mu)) = 1) \right]$

Question: does there exist $U \supset \operatorname{supp}(\mu)$ such that $m(\mathscr{B}(\mu) \cap U) = m(U) > 0, m =$ Riemannian volume? (physical measure)

Examples:

- when μ is ergodic a.c. wrt to m with density > 0 on an open set U (Birkhoff)
- when $\mu = \delta_x$ for a sink $x / \mu = \delta_p$ for the figure-eight attractor

$$\equiv \mathscr{B}(\mu)$$
, i.e., $\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^k(x)} \to \mu$

 $\frac{1}{n}\sum_{k=0}^{n-1}\varphi\circ f^k\to \varphi^*\mu\text{-a.e.}$

A brief history, conservative/dissipative systems

- 1950s: Kolmogorov, Arnold and Moser ~ obstructions to ergodicity for Hamiltonian systems (KAM theory)
- **1960s**: work of Anosov and Sinai on hyperbolic systems \bullet
- **1970s:** study of broader classes of systems with some hyperbolicity initiated by Brin, Pesin, Hirsch, Pugh, Shub... \bullet ~ partially hyperbolic systems / non-uniformly hyperbolic systems

Conservative/dissipative systems

Each map f as above preserves the class of the measure m induced by the Riemannian metric:

$$\frac{df_*m}{dm}(x) =$$

• conservative systems: if f has an invariant measure a.c. with respect to m

• dissipative systems: each f-invariant measure with full support has a part which is singular with respect to m

• 1930s: Hadamard and Hopf ~ progress on ergodic properties of smooth systems (geodesic flow on negatively curved surfaces)

$$\sum_{y \in f^{-1}(x)} \det Df(y) \, dm(y)$$

Example of conservative systems

Hamiltonian dynamics

(examples: billiards, geodesic flows, *n*-body problem...)

$$M = \mathbb{R}^{2n} = \{(x_1, \dots, x_n, y_1, \dots, y_n)\}, \text{ endowed we have a state of } M = \{(x_1, \dots, x_n, y_1, \dots, y_n)\}, \text{ endowed } M = \{(x_1, \dots, x_n, y_1, \dots, y_n, y_n, \dots, y_n)\}, \text{ endowed } M = \{(x_1, \dots, x_n, y_n, \dots, y_n, y_n, \dots, y_n, y_n, \dots, y_n,$$

Let $H: U \to \mathbb{R}$ smooth, for an open set $U \subset M$, $\sim (X^t)_t$ flow induced by the vector field F such that $\omega(F, \cdot) = dH$

$$\frac{\partial x_j}{\partial t} = \frac{\partial H}{\partial y}$$

The flow $(X^t)_t$ preserves the levels $H^{-1}(c)$ and ω , hence the volume $m = \begin{bmatrix} dx_i dy_i \text{ (Liouville measure)} \end{bmatrix}$ i=1

Example of dissipative system

 $f: \mathbb{S}^1 \to \mathbb{S}^1$ with North pole - South pole dynamics between two fixed points N, S, N repelling (f'(N) > 1) and S attracting (0 < f'(S) < 1)

 $\sim f$ is dissipative (and δ_S is a physical measure)

Proof: let μ be an *f*-invariant measure with $\mu(\{S\}) = 0$, and let $I \subset S^1 \setminus \{S\}$ open neighborhood of N, with $\mu(I) > 0$

$$\bigcap_{k=1}^{+\infty} f^{-k}(I) = \{N\}$$
 but for all $n \ge 1$,

 $\mu(\bigcap_{k=1}^{n} f^{-k}(I)) = \mu(f^{-n}(I)) = \mu(I)$

 $\implies \mu(\{N\}) = \mu(\bigcap_{k=1}^{+\infty} f^{-k}(I)) = \mu(I) > 0 \blacksquare$

Definition: an *f*-invariant set $\Lambda \subset M$ has a dominated splitting if $T_{\Lambda}M = E_1 \oplus \cdots \oplus E_k$, with

- $\dim(E_i(x))$ independent of x, for $i \in \{1, \dots, k\}$
- (invariance) $\forall x \in \Lambda$, $Df(x)E_i(x) = E_i(f(x))$, for $i \in \{1, \dots, k\}$
- (domination) $\exists c > 0, \lambda \in (0,1)$ such that $\forall x \in \Lambda, \forall i \in \{1, \dots, k-1\}$,

$$\|Df^{n}(x)\|_{E_{i}}\| < c\lambda^{n}m(Df^{n}(x)\|_{E_{i+1}})$$

Definition: a cone-field \mathscr{C} on an invariant set $\Lambda \subset M$ is a map $\Lambda \ni x \mapsto \mathscr{C}(x)$ where $\mathscr{C}(x) = \{v \in T_x M : Q_x(v) \ge 0\}$ is a cone, such that in local charts, the quadratic form $\{Q_x\}_{x\in\Lambda}$ defining them can be chosen continuously and have the same signature (d_+, d_-)

 \prec a cone-field \mathscr{C} on Λ is contracted if there exists $N \geq 1$ s.t.

Theorem: (cone-field criterion) let $f \in \text{Diff}^2(M)$, $\Lambda \subset M$ an invariant compact set, and fix $d_+ \ge 1$; then Λ has a contracted cone-field \mathscr{C} of dimension d_+ if and only if there exists a dominated splitting $T_{\Lambda}M = E_- \oplus E_+$ with $\dim(E_+) = d_+$

for any
$$x \in \bigcap_{i=0}^{N} f^{-k}(\Lambda)$$
, we have $Df^{N}(x)\mathscr{C}(x) \subset int(\mathscr{C}(f^{N}(x)))$

Foliations, absolute continuity

Let M be a smooth manifold of dimension $n \geq 1$

Definition: for $1 \le k \le n$, a continuous k-dimensional foliation \mathcal{W} with C^1 leaves of M is a partition of M into C^1 submanifolds $\mathscr{W}(x) \ni x$ which locally depend continuously on x in the C^1 topology

Let m be the Riemannian volume in MFor any submanifold $N \subset M$, let m_N be the induced Riemannian volume in N

Definition: let \mathcal{W} be a foliation, let (U, h) be a foliation coordinate chart, let $L = h(\{y\} \times B^{n-k})$ be a C^1 local transversal We say that \mathcal{W} is absolutely continuous if for any such L and U, 3 measurable family of positive measurable function $f_x: \mathscr{W}(x) \cap U =: \mathscr{W}_U(x) \to \mathbb{R}$ (conditional densities) s.t. \forall meas. $A \subset U$, $m(A) = \int_{L} \int_{\mathcal{W}_{U}(x)} \mathbf{1}_{A}(x, y) f_{x}(y) \ dm_{\mathcal{W}(x)}(y) dm_{L}(x)$

 \sim in particular, conditional densities are automatically integrable

Hyperbolic Systems

- Let M be a smooth compact Riemannian manifold
- let $f: M \to M$ be a C^k (local) diffeomorphism, $k \ge 1$ ($k \ge 2$ in most of the following) or $(X^t: M \to M)_{t \in \mathbb{R}}$ (semi-)flow C^k , $k \ge 1$, with generator X

Definition: Λ compact *f*-invariant set is hyperbolic if it has a dominated splitting $TM |_{\Lambda} = E^{s} \bigoplus E^{u}$, where stable/unstable bundle E^{s}/E^{u} are uniformly contracted/expanded, i.e., $\exists C > 0, 0 < \lambda < 1 < \mu$ such that $\forall x \in \Lambda, n \ge 0$:

$$\|Df^n(x)v^s\| \le c\lambda^n \|v^s\|, \qquad v^s \in E^s(x)$$
$$\|Df^n(x)v^u\| \ge c^{-1}\mu^n \|v^u\|, \qquad v^u \in E^u(x)$$

 $\sim TM|_{\Lambda} = E^s \oplus \mathbb{R}X \oplus E^u$ in the case of a flow

- E^s, E^u integrate uniquely into f-invariant foliations \mathcal{W}^s (stable), \mathcal{W}^u (unstable), Hölder continuous, absolutely continuous (a.c.) when $k \ge 2$
- diffeomorphism/flow with $\Lambda = M$: Anosov system

Partially Hyperbolic Systems

- *M* compact Riemannian manifold
- $f: M \to M C^k$ diffeomorphism, $k \ge 1$

for $c > 0, \lambda_s < \mu_c \le \lambda_c < \mu_u$, with $\lambda_s < 1 < \mu_u$, we have $\forall x \in \Lambda, n \ge 0$: $c^{-1}\mu_{c}^{n}\|v^{c}\| \leq \|Df^{n}(x)v^{c}\| \leq c\lambda_{c}^{n}\|v^{c}\|,$ $c^{-1}\mu_{\mu}^{n} \|v^{\mu}\| \le \|Df^{n}(x)v^{\mu}\|,$

• E^s, E^u integrate uniquely to *f*-invariant foliations \mathcal{W}^s (stable), \mathcal{W}^u (unstable), not necessarily E^c \mathcal{W}^{s} , \mathcal{W}^{u} are Hölder continuous, absolutely continuous when $k \geq 2$

- **Definition:** f is partially hyperbolic if there exists a dominated splitting $TM = E^s \oplus E^c \oplus E^u$ s.t.
 - $\|Df^n(x)v^s\| \le c\lambda_s^n \|v^s\|, \qquad v^s \in E^s(x)$
 - $v^c \in E^c(x)$
 - $v^u \in E^u(x)$

Some (partially) hyperbolic systems

Anosov flows: geodesic flow on negatively curved
 hyperbolic set: Smale's horseshoe surfaces

• Anosov diffeomorphisms: Arnold's cat map on \mathbb{T}^2

- partially hyperbolic diffeomorphisms:
 - time-one map X^1 of an Anosov flow $(X^t)_t$
 - $A \times Id$, where A is hyperbolic

Basic sets, attractors

• a hyperbolic set Λ is called basic if it is transitive and locally maximal:

$$\Lambda = \bigcap_{n \in \mathbb{Z}} f^{-n}(\mathcal{U}),$$

• Λ is an attractor if there exists a neighborhood $\mathcal U$ of Λ such that

Basic properties:

– local product structure

$$-\Lambda = \bigcup_{x \in \Lambda} \mathscr{W}^{u}(x)$$
$$-\mathscr{U} \subset \bigcup_{x \in \Lambda} \mathscr{W}^{s}(x)$$

, for a neighborhood ${\mathcal U}$ of Λ

 $f(\overline{\mathcal{U}}) \subset \mathcal{U} \text{ and } \Lambda = \bigcap_{n \in \mathbb{N}} f^n(\mathcal{U})$

(Plykin attractor)

Basic properties of hyperbolic systems

- sensitivity to initial conditions (« chaotic » systems)
- « good » understanding of statistical properties: - ergodicity for C^2 conservative systems existence of SRB measures for hyperbolic attractors
- structural stability (Anosov '67) :

 $h: \mathcal{U} \to C^0(\Lambda, M)$ such that for all $g \in \mathcal{U}$,

$$\Lambda_g := h_g(\Lambda)$$
$$h_g \circ f|_{\Lambda} = g \circ h_g|$$

density of periodic orbits for basic sets

If Λ is hyperbolic for $f \in \text{Diff}^1(M)$, then there exists a neighborhood $\mathcal{U} \subset \text{Diff}^1(M)$ of f and

-) is hyperbolic for g,
- (topological conjugacy)
- In the case of a hyperbolic flow $(X^t)_t$, if $(Y^t)_t$ is C^1 -close to $(X^t)_t$, there exists an orbit equivalence

Use of foliations in smooth ergodic theory

- 1. Statistical properties
 - stable ergodicity for C^2 conservative diffeomorphisms
 - SRB measures: capture the statistical behavior of « many » orbits

- 2. Properties of invariant foliations $\mathcal{W}^{s/u}$
 - absolute continuity/Hölder regularity of the foliations \mathscr{W}^s and \mathscr{W}^u
 - transitivity of the pair $(\mathcal{M}^{S}, \mathcal{M}^{u})$

Stable Manifold Theorem

Let $f \in \text{Diff}^r(M), r \ge 1$ Let $\Lambda \subset M$ compact f-invariant set with a partially hyperbolic splitting $T_{\Lambda}M = E^s \oplus E^c$, dim $(E^s) \ge 1$, E^s uniformly contracted

Definition: given $\varepsilon > 0$ small, for each $x \in \Lambda$, define the strong stable set:

 $\mathscr{W}^{s}(x) := \left\{ y \in M : \exists c > 0 \text{ s.t.} \forall n \geq 0 \right\}$

Theorem: (Stable Manifold Theorem, Hirsch-Pugh-Shub)

- tangent to $E^{s}(x)$ at x
- the strong stable set does not depend on ε as long as it is small enough
- for any $x, y \in \Lambda$, the strong stable sets $\mathscr{W}^{s}(x), \mathscr{W}^{s}(y)$ are either disjoint or coincide

$$\geq 0, d(f^{n}(x), f^{n}(y)) < ce^{-\varepsilon n} \min\{m(Df^{n}|_{E^{c}(x)}), 1\}\}$$

• for any $x \in \Lambda$, the strong stable set $\mathscr{W}^{s}(x)$ is an injectively immersed C^{r} -submanifold diffeomorphic to $\mathbb{R}^{\dim(E^{s})}$,

• for $\eta > 0$ small, the ball $\mathscr{W}^{s}(x, \eta)$ in $\mathscr{W}^{s}(x)$ of center x and radius η depends continuously on x and f for the C^r-topology

Proof of Stable Manifold Theorem: 1) Plaque families

Theorem: (Plaque Families, Hirsch-Pugh-Shub)

Let $f \in \text{Diff}^r(M)$, $r \ge 1$, let $\Lambda \subset M$ compact f-invariant set with a dominated splitting $T_{\Lambda}M = E \oplus F$. Then, for every $x \in \Lambda$, there exists a C^1 embedding $\iota_E(x)$: $E(x) \supset B(0,1) \rightarrow M$ such that:

- (tangency) for any $x \in \Lambda$, $\iota_E(x)(0) = x$, and $\iota_E(x)(B(0,1))$ is tangent to E(x) at x
- (continuity) the embeddings $\{\iota_E(x)\}_x$ depend continuously on $x \in \Lambda$ in the C¹-topology
- (local invariance) there exists $\delta_0 \in (0,1)$ such that for $x \in \Lambda$, it holds $f(\iota_E(x)(B(0,\delta_0))) \subset \iota_E(f(x))(B(0,1))$

Proof:

complement of $B(0,\alpha)$ by a bump function to get a diffeomorphism $\hat{f}_x: T_x M \to T_{f(x)} M$

Lemma: for any $\varepsilon > 0$, there exists $\alpha > 0$ such that $d_{C^1}(\hat{f}_x, Df(x)) < \varepsilon$

a. Lift f to a C^r local diffeomorphism $f_x := \exp_{f(x)}^{-1} \circ f \circ \exp_x$ from $B(0, \alpha/2) \subset T_x M$ to a neighborhood of 0 in $T_{f(x)}M$ and glue it with Df(x) on the

b. Let \mathscr{C}_{F} be a cone-field along F that is contracted by f Let \mathscr{C}_{E} be a cone-field along E that is contracted by f^{-1} \sim on each tangent space $T_x M$, one obtains a constant cone field which coincides with $\mathscr{C}_E(x)$ $\sim \hat{f}_x^{-1}$ contracts $\mathscr{C}_F(f(x))$ into $\mathscr{C}_F(x)$

 $\sim L_x \text{ is complete for the distance } d(\psi_1, \psi_2) := \max_{u \in E(x)} \frac{d(\psi_1(u), \psi_2(u))}{\|u\|}$ (distance is bounded because graphs are uniformly Lipschitz)

Lemma: $\hat{f}_x^{-1}(L_{f(x)}) \subset L_x$ (projection on E(x) is injective on the image of the graph)

Let L_x be the family of Lipschitz graphs tangent to $\mathscr{C}_E(x)$ containing 0, i.e., the graphs of Lipschitz functions $\psi \colon E(x) \to F(x)$ such that $\psi(0) = 0$ and $(u, \psi(u)) - (v, \psi(v)) \in \mathscr{C}_E(x), \forall u, v \in E(x)$

c. Lemma: (contraction) for $n \in \mathbb{N}$ large enough, $\hat{F}_x^n := (\hat{f}_{f^{n-1}(x)} \circ \cdots \circ \hat{f}_x)^{-1} : L_{f^n(x)} \to L_x$ is a contraction

Proof: let ψ'_1, ψ'_2 be the images by \hat{F}^n_x of $\psi_1, \psi_2 \in L_{f^n(x)}$, and fix $u \in E(x)$ $\sim (u, \psi'_1(u)) = \hat{F}^n_x(v, \psi_1(v)) \& (u, \psi'_2(u)) = \hat{F}^n_x(w, \psi_2(w)), \text{ for } v, w \in E(f^n(x))$

Let us assume that v = w for simplicity, i.e., $(u, \psi'_i(u)) = \hat{F}^n_x(v, \psi_i(v)), i = 1, 2$

• $(v,0) \in \mathscr{C}_E(f^n(x))$ and $(u,0) \in \mathscr{C}_E(x)$, where $\mathscr{C}_E(f^n(x))$ contracted by \hat{F}_x^n , and \hat{F}_{x}^{n} close to $(Df^{n}(x))^{-1}$, hence

• $(0,\psi_1(v) - \psi_2(v)) = (v,\psi_1(v)) - (v,\psi_2(v)) \in \mathscr{C}_F(f^n(x)),$ $(0,\psi'_1(u) - \psi'_2(u)) = (u,\psi'_1(u)) - (u,\psi'_2(u)) \in \mathscr{C}_F(x)$, where $\mathscr{C}_F(x)$ contracted by $(\hat{F}^n_x)^{-1}$, hence

 $d(\psi_1(v), \psi_2(v)) \ge m(Df^n(x)|_F)e^{-\varepsilon n}d(\psi'_1(u), \psi'_2(u))$

thus

$$\frac{d(\psi'_1(u), \psi'_2(u))}{\|u\|} \le e^2$$

 $\sim d(\psi'_1, \psi'_2) \leq c\lambda^n e^{2\epsilon n} d(\psi_1, \psi_2)$, by domination, hence uniform contraction for *n* large enough

 $_{2\epsilon n} \| \mathcal{D}f''(x) \|_{E} \| d(\psi_{1}(v), \psi_{2}(v))$ $m(Df^n(x)|_{F})$ $\|v\|$

d. Let $\mathscr{L}_{x} := \begin{bmatrix} L_{f^{k}(x)}, \text{ endowed with the distance given by supremum distance on each } L_{f^{k}(x)} \end{bmatrix}$ $k \in \mathbb{Z}$ $\sim \operatorname{product} \operatorname{map} (\hat{f}_{f^{k}(x)}^{-1})_{k \in \mathbb{Z}} \colon (\psi_{f^{k}(x)})_{k \in \mathbb{Z}} \mapsto$ and (after iteration) it is a contraction \sim there exists a fixed point $(\psi_{f^k(x)})_{k \in \mathbb{Z}}$ \sim let then define the embedding $\iota_E(x) \colon E(x) \to M, \ u \mapsto \exp_x(u, \psi_x(u))$ As $\hat{f}_x|_{B(0,\alpha/2)} \equiv f_x := \exp_{f(x)}^{-1} \circ f \circ \exp_x|_{B(0,\alpha/2)}$ and \hat{f}_x sends ψ_x to $\psi_{f(x)}$, for $\delta_0 > 0$ small enough, $f(\iota_E(x)(B(0,\delta_0))) = \exp_{f(x)}\hat{f}_x(\operatorname{graph}(\psi_x)|_{B(0,\delta_0)}) \subset \exp_{f(x)}(\operatorname{graph}(\psi_{f(x)})|_{B(0,1)}), \text{ i.e.,}$ $f(\iota_E(x)(B(0,\delta_0))) \subset \iota_E(f(x))(B(0,1))$

$$(\hat{f}_{f^{k}(x)}^{-1}(\psi_{f^{k+1}(x)}))_{k\in\mathbb{Z}}$$
 acts on \mathscr{L}_{x}

 $\hat{E}(u) := \text{vectors } (v_k)_{k \in \mathbb{Z}}$ tgt at u whose iterates under $(\hat{f}_{f^k(x)})_{k \in \mathbb{Z}}$ remain in the cones $(\mathscr{C}_E(f^k(x)))_{k \in \mathbb{Z}})$ $\hat{F}(u) := \text{vectors } (v_k)_{k \in \mathbb{Z}}$ tgt at u whose iterates under $(\hat{f}_{f^k(x)})_{k \in \mathbb{Z}}$ remain in the cones $(\mathscr{C}_F(f^k(x)))_{k \in \mathbb{Z}})$

Since ψ_x is Lipschitz, it is differentiable at almost every $u \in T_x M$, hence has a tangent space whose iterates remain in the cones $(\mathscr{C}_E(f^k(x)))_{k \in \mathbb{Z}}$ \implies tangent space in $\hat{E}(u)$ \prec Since $\hat{E}(u)$ depends continuously on u, ψ_x is C^1 and tangent to $\hat{E}(u)$ everywhere $\sim \iota_E(x)(B(0,1))$ is tangent to E(x) at 0

e. By the cone-field criterion for the maps \hat{f}_x , at each $u \in T_x M$ there exists a splitting $\hat{E}(u) \oplus \hat{F}(u)$ s.t.

f. By construction, ψ_x is close to $\hat{F}_x^n(\psi')$ for $\psi' \in \mathscr{L}_{f^n(x)}$ arbitrary, where $\hat{F}_x^n := (\hat{f}_{f^{n-1}(x)} \circ \cdots \circ \hat{f}_x)^{-1}$ Fixing *n* and considering $\psi' := \psi_{f^{-n}(x')}$ for x' close to x, it implies that ψ_x and $\psi_{x'}$ are close on B(0,1)

Proof of Stable Manifold Theorem: 2) Coherence argument

Corollary: let $f \in \text{Diff}^r(M)$, $r \ge 1$, let $\Lambda \subset M$ compact f-invariant set with a partially hyperbolic splitting $T_{\Lambda}M = E^s \oplus E^c$ Let $\iota_{E^s}(x)$ be the embedding of $E^s(x)$ given by the Plaque families Theorem. Fix $N \in \mathbb{N}$ large, $\varepsilon, \delta_0 > 0$ small, and let

A. For any $x \in \Lambda$, $n \ge 0$, diam $(f^n(\mathcal{W}_{loc}^s(x))) \le e^{n\varepsilon}$

B. For any $x \in \Lambda$, $n \ge N$, $f^n(\mathcal{W}^s_{loc}(x)) \subset \mathcal{W}^s_{loc}(f^n(x))$

C. For any $x \in \Lambda$, $\mathscr{W}^{s}(x) = \bigcup_{k \ge 0} f^{-k}(\mathscr{W}^{s}_{loc}(f^{k}(x)))$

Proof: for $\delta_0 > 0$ small enough, the disc $\mathscr{W}^s_{loc}(x)$ is almost linear, and the action of f^n is close to that of $Df^n|_{E^s(x)}$ A. is proved inductively, checking by the local invariance that $f^n(\mathcal{W}_{loc}^s(x)) \subset \iota_{E^s}(f^n(x))(B(0,1))$ B. follows from A.

 $\mathscr{W}^{s}_{\mathrm{loc}}(x) := \iota_{E^{s}}(x)(B(0,\delta_{0}))$

$$\sum_{k=0}^{[n/N]} \|Df^{kN}(x)\|_{E^s}\|$$

C. by A. and the domination, we deduce that $\mathscr{W}^{s}(x) \supset \bigcup_{k\geq 0} f^{-k}(\mathscr{W}^{s}_{loc}(f^{k}(x)))$. Let us show the other inclusion:

Proof of Stable Manifold Theorem: 2) Coherence argument

Coherence argument: let $z \in \mathcal{W}^{s}(x)$; up to iteration, assume that their forward iterates remain at distance $\ll \delta_0$

Let \mathscr{D} be a small disk containing z and $y \in \mathscr{W}_{loc}^{s}(x)$ and tangent to a contracted cone field $\mathscr{C}_{E^{c}}$ \sim forward iterates of \mathscr{D} remain tangent to \mathscr{C}_{E^c}

For $\varepsilon > 0$ small, and $n \in \mathbb{N}$ large, let us estimate the distance between the points $f^n(x), f^n(y), f^n(z)$:

- $d(f^{n}(x), f^{n}(y)) < c_{1}e^{n\varepsilon} ||Df^{n}|_{E^{s}(x)}||$
- $d(f^{n}(x), f^{n}(z)) < c_{2}e^{-\varepsilon n}m(Df^{n}|_{E^{c}(x)})$
- $d(f^n(y), f^n(z)) > c_3 e^{-\frac{\varepsilon}{2}n} m(Df^n|_{E^c(x)})$

By the domination, and the triangle inequality, we get a contradiction

Absolute continuity of \mathcal{M}^s , \mathcal{M}^u

Let M be a smooth manifold of dimension $n \geq 1$

Definition: the holonomy map $H = H_{L_1,L_2}$: $L_1 \to L_2$ is the homeomorphism $h(y_1, z) \mapsto h(y_2, z)$, for $z \in B^{n-k}$

Definition: the foliation \mathcal{W} is transversely absolutely continuous if the holonomy map H is absolutely continuous for any foliation chart and any transversals L_1, L_2 , i.e., there exists a positive measurable function $J: L_1 \to \mathbb{R}$ (the Jacobian of H) such that for any measurable subset $A \subset L_1$,

 $m_{L_{\alpha}}(H(A))$:

Let \mathcal{W} be a foliation of M, let (U, h) be a foliation coordinate chart, and let $L_i = h(\{y_i\} \times B^{n-k})$ be two C^1 local transversals, i = 1, 2

$$= \int_{L_1} \mathbf{1}_A J(z) \ dm_{L_1}(z)$$

Transverse absolute continuity

Proposition: if a foliation \mathcal{W} is transversely absolutely continuous, then it is absolutely continuous

Let \mathscr{G} be an n - k dimensional C^1 -foliation such that $L = \mathscr{G}_U(x) := \mathscr{G}(x) \cap U$ and $U = \bigcup_{y \in \mathscr{W}_U(x)} \mathscr{G}_U(y)$ $\sim \mathcal{G}$ is absolutely continuous and transversally absolutely continuous Denote by $\{g_v(\cdot)\}_v$ the densities for \mathscr{G} (continuous, hence measurable)

For any measurable set $A \subset U$, by Fubini,

$$m(A) = \int_{\mathcal{W}_U(x)} \int_{\mathcal{G}_U(y)} \mathbf{1}_A(y, z) g_y(z) \ dm_{\mathcal{G}(y)}(z) dm_{\mathcal{W}(x)}(y)$$

Let H_v be the holonomy map along the leaves of \mathscr{W} from $\mathscr{G}_U(x) = L$ to $\mathscr{G}_U(y)$ Let $J_{v}(\cdot)$ be the Jacobian of H_{v}

$$\sim \int_{\mathcal{G}_U(y)} \mathbf{1}_A(y, z) g_y(z) \ dm_{\mathcal{G}(y)}(z) = \int_L \mathbf{1}_A(H_y(s)) J_y(s) g_y(H_y(s)) \ dm_L(s)$$

Proof: let (U, h) be a foliation coordinate chart on M, and let $L = h(\{y\} \times B^{n-k})$ be a C^1 local transversal

Transverse absolute continuity

Change order of integration in

$$m(A) = \int_{\mathcal{W}_U(x)} \int_{\mathcal{G}_U(y)} \mathbf{1}_A(y, z) g_y(z) \ dm_{\mathcal{G}(y)}(z) dm_{\mathcal{W}(x)}(y)$$

$$\sim m(A) = \int_L \int_{\mathcal{W}_U(x)} \mathbf{1}_A(H_y(s)) J_y(s) g_y(H_y(s)) \ dm_{\mathcal{W}(x)}(y)$$

Let \bar{H}_s be the holonomy map along the leaves of \mathscr{G} from $\mathscr{W}_U(x)$ to $\mathscr{W}_U(s)$, $s \in L$, and let $\bar{J}_s(\cdot)$ be the Jacobian of \bar{H}_s . Using a change of variables $r = H_y(s)$, $y = \bar{H}_s^{-1}(r)$, transform integral over $\mathscr{W}_U(x)$ into integral over $\mathscr{W}_U(s)$:

$$\int_{\mathcal{W}_{U}(x)} \mathbf{1}_{A}(H_{y}(s))J_{y}(s)g_{y}(H_{y}(s)) \ dm_{\mathcal{W}(x)}(y) = \int_{\mathcal{W}_{U}(s)} \mathbf{1}_{A}(r)J_{y}(s)g_{y}(r)\overline{J}_{s}^{-1}(r) \ dm_{\mathcal{W}(s)}(r)$$

$$\thicksim m(A) = \int_{L} \int_{\mathcal{W}_{U}(s)} \mathbf{1}_{A}(r)$$

 $J_{y}(s)g_{y}(r)\overline{J}_{s}^{-1}(r) dm_{\mathcal{W}(s)}(r)dm_{L}(s) \blacksquare$

Proof of absolute continuity of \mathcal{W}^{s} , \mathcal{W}^{u}

For subspaces $A, B \subset \mathbb{R}^N$, let $\Theta(A, B) := \min\{\|v - w\| : v \in A, \|v = 1\|, w \in B, \|w\| = 1\}$

Lemma: let \hat{E} be a smooth k-dimensional distribution on a compact subset of \mathbb{R}^N $\forall \xi > 0, \varepsilon > 0$, there exists $\delta > 0$ s.t. if $Q_1, Q_2 \subset \mathbb{R}^N$ are two N - k-dim. C^1 submanifolds with a smooth holonomy map $\hat{H}: Q_1 \to Q_2$ along \hat{E} s.t. for all $x \in Q_1$,

 $\Theta(T_x Q_1, \hat{E}(x)) \ge \xi, \qquad \Theta(T_{\hat{H}(x)} Q_2, \hat{E}(x)) \ge \xi,$ dist $(T_x Q_1, T_{\hat{H}(x)} Q_2) \le \delta$, $\|\hat{H}(x) - x\| \le \delta$,

then the Jacobian of \hat{H} is smaller than $1 + \varepsilon$

Proof: only the first derivatives of Q_1, Q_2 affect the Jacobian of \hat{H} Q_1 \sim it is equal to the Jacobian of the holonomy map $\overline{H}: T_x Q_1 \to T_{\hat{H}(x)} Q_2$ along \hat{E} After linear change of coordinates (depending only on ξ), we may assume that in the new coordinates $(u, v) \in \mathbb{R}^N$,

 $x = (0,0), \quad T_{(0,0)}Q_1 = \{v = 0\}, \quad \hat{H}(x) = (0,v_0), \|v_0\| = \|\hat{H}(x) - x\|, \quad T_{(0,v_0)}Q_2 = \{v = v_0 + Bu\}$

for some $k \times (N - k)$ matrix *B* whose norm depends only on δ ,

for some $(N - k) \times k$ matrix A(w) which is C^1 in w, A(0) = 0

 $\hat{E}(0,0) = \{u = 0\}, \quad \hat{E}(w,0) = \{u = w + A(w)v\}$

Proof of absolute continuity of \mathscr{W}^{s} , \mathscr{W}^{u}

$$x = (0,0), \quad T_{(0,0)}Q_1 = \{v = 0\}, \quad \hat{H}(x) = (0,0)$$

 $\hat{E}(0,0) = \{u = 0\},$

∼ Image of (*w*,0) under \hat{H} is {*u* = *w* + *A*(*w*)*v*} ∩ {*v* = Norm of *B* bounded from above in terms of *ξ* ∼ enough

$$u = w + 1$$

$$\frac{\partial u}{\partial w} = I + \frac{\partial A(w)}{\partial w} v_0 + \frac{\partial A(w)}{\partial w} Bu + A(w) B \frac{\partial u}{\partial w}$$

and then for w = 0, (recall u(0) = 0, A(0) = 0)

 $\frac{\partial u}{\partial w}\Big|_{w=0} = 1$

 $\begin{array}{l} 0, v_0), \|v_0\| = \|\hat{H}(x) - x\|, \quad T_{(0, v_0)}Q_2 = \{v = v_0 + Bu\}\\ \\ \hat{E}(w, 0) = \{u = w + A(w)v\} \end{array}$

=
$$v_0 + Bu$$
}
n to estimate $\frac{\partial u}{\partial w}$ at $w = 0$

 $-A(w)v_0 + A(w)Bu$

$$I + \frac{\partial A(w)}{\partial w} \big|_{w=0} v_0 \blacksquare$$

Proof of absolute continuity of \mathcal{W}^{s} , \mathcal{W}^{u}

Theorem: the stable and unstable foliations $\mathscr{W}^s, \mathscr{W}^u$ of a C^2 Anosov diffeomorphism are transversely absolutely continuous

- $\|Df^n(x)v^s\| \le c\lambda^n \|v^s\|, \qquad v^s \in E^s(x)$ $||Df^{n}(x)v^{u}|| \ge c^{-1}\mu^{n}||v^{u}||, \qquad v^{u} \in E^{u}(x)$

We will focus on $\mathscr{W}^s \sim i$ idea: uniformly approximate holonomy maps by continuous maps with uniformly bounded Jacobians \sim let \hat{E}^s be a smooth distribution that approximate the continuous distribution E^s

We assume that $M \subset \mathbb{R}^N$. By compactness, for some $\theta_0 > 0$, $\Theta(E^s(x), E^u(x)) \ge \theta_0$, for all $x \in M$, and there exist foliation charts $(U_i, h_i)_{i=1}^l$ of $\mathscr{W}^s \sim \exists \epsilon, \delta > 0$ s.t. $\forall y \in U_i, \forall L \subset U_i$ compact submanifold of U_i s.t.

• L intersects transversely each local stable leaf of U_j

•
$$\Theta(T_zL, E^s) > \frac{\theta_0}{3}$$
, for all $z \in L$

• dist $(y, L) < \delta$

then for any subspace $E \subset \mathbb{R}^N$ with $dist(E, E^s(y)) < \epsilon, y + E \pitchfork L$ =

Proof: let $f: M \to M$ be a C^2 Anosov diffeomorphism with stable and unstable distributions $E^s, E^u, c > 0, 0 < \lambda < 1 < \mu$ s.t. $\forall x \in \Lambda, n \ge 0$:

$$= \{\pi(y)\}, \text{ with } \|y - \pi(y)\| < \frac{6\delta}{\theta_0}$$

Let (U, h) be a foliation coordinate chart, L_1, L_2 local transversals in U with holonomy map $H: L_1 \to L_2$ (along the leaves of \mathcal{W}^s), let $\hat{H}: f^n(L_1) \to f^n(L_2)$ and $H_n: L_1 \to L_2$ be the maps given by

 $\hat{H}: f^n(x) \mapsto (f^n(x) + \hat{E}^s(f^n(x))) \pitchfork f^n(L_2), \qquad H_n: x \mapsto f^{-n}(\hat{H}(f^n(x)))$

For $x_1 \in L_1$, $x_2 = H_n(x_1)$, $y_i = f^n(x_i)$, i = 1,2; it holds $d(f^k(x_1), f^k(x_2)) \le c\lambda^k d(x_1, x_2)$, $\forall k \ge 0$

If \hat{E}^s is close enough to E^s , it is uniformly transverse to $f^n(L_1), f^n(L_2)$, hence $d(\hat{H}(f^n(x_1)), f^n(H(x_1))) \leq c_1 d(f^n(x_1, f^n(H(x_1)))) \leq c_1 c \lambda^n d(x_1, H(x_1)))$

The angle
$$\angle (x_2 - x_1, H(x_1) - x_1) \lesssim \left(\frac{\lambda}{\mu}\right)^n$$
, hence

$$d(H_n(x_1), H(x_1)) \le c_2 \left(\frac{\lambda}{\mu}\right)^n d(x_1, H($$

 (x_1) , i.e. H_n converges uniformly to H as $n \to +\infty$

Lemma: the Jacobians of H_n are uniformly bounded

Proof: by previous estimates, $d(f^k(x_1), f^k(x_2)) \le c_3 \lambda^k$, for $k \ge 0$ Let $J(f^k(x_i))$ be the Jacobian of f in the direction of $T_{f^k(x_i)}f^k(L_i)$, for $i = 1, 2, k \ge 0$ Let J_n be the Jacobian of H_n , Let \hat{J} the Jacobian of \hat{H} (it is uniformly bounded by the previous lemma)

$$\thicksim J_n(x_1) = \prod_{k=0}^{n-1} (J(f^k(x_2)))^{-1} \hat{J}(f^n(x_1)) \prod_{k=0}^{n-1} J(f^k(x_1))$$

 \sim it remains to bound $\prod_{k=0}^{n-1} \frac{J(f^k(x_1))}{J(f^k(x_2))}$ from above: follows from $\operatorname{dist}(T_{f^k(x_1)}f^k(L_1), T_{f^k(x_2)}f^k(L_2)) \leq c_4\lambda^{\alpha k}$, and Lipschitz continuity of $J \blacksquare$

End of the proof of a.c.: by the previous lemma, $\exists J > 0$ s.t. for any measurable set $A \subset L_1$, $m_{L_2}(H_n(A)) \leq Jm_{L_1}(A)$ Enough to work with balls: let $B(x, r) \subset L_1$ be a ball in L_1 ; for $\delta > 0$ small, $n \ge 0$ large, $H(B(x, r - \delta)) \subset H_n(B(x, r))$,

$$\implies m_{L_2}(H(B(x,r-\delta))) \le m_{L_2}(H_n(B(x,r))) \le Jm_{L_1}(B(x,r))$$
$$\implies m_{L_2}(H(B(x,r))) = \lim_{\delta \to 0} m_{L_2}(H(B(x,r-\delta))) \le Jm_{L_1}(B(x,r)) \blacksquare$$

Proof of absolute continuity of $\mathcal{M}^s, \mathcal{M}^u$

Ergodicity of conservative Anosov diffeomorphisms

Theorem: (Anosov, Sinai '67) if $f: M \to M$ is a C^2 conservative Anosov diffeomorphism ($f_*m = m, m$ volume) on a compact connected Riemannian manifold M, then f is ergodic

Proof: (Hopf argument) $\forall \varphi \in L^2(M, \mathbb{R})$, let

$$\bar{\varphi}_f := \limsup_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^k$$

Birkhoff's Theorem $\implies \bar{\varphi}_f = \pi_f(\varphi)$, where π_f is the projection $\pi_f \colon L^2(M,\mathbb{R}) \to L^2_f(M,\mathbb{R})$

Claim: to show that f is ergodic, enough to show that $^{\circ}$

Proof: since π_f is continuous, and $C^0(M, \mathbb{R})$ is dense in $L^2(M, \mathbb{R})$, we thus have $\pi_f(L^2(M,\mathbb{R})) = L^2_f(M,\mathbb{R}) = \{\text{cst fcts}\}\blacksquare$

$$A) := \{ \psi \in L^2(M, \mathbb{R}) : \psi \circ f = \psi \}$$

$$\forall \, \varphi \in C^0(M, \mathbb{R}), \, \bar{\varphi}_f = ext{cst a.e.} \, (= \int_M \varphi \, dm)$$

n $L^2(M, \mathbb{R})$, we thus have

Ergodicity of conservative Anosov diffeomorphisms

- 1. Local ergodicity: fix $\varphi \in C^0(M, \mathbb{R})$; then $\overline{\phi}_f$ is locally constant Key remarks:
- i. $\bar{\varphi}_f$ is constant along the leaves of \mathscr{W}^s ($\leftarrow \lim d(f)$
- ii. $\bar{\varphi}_f = \bar{\varphi}_{f^{-1}}$ a.e. (*f*-invariance $\Leftrightarrow f^{-1}$ -invariance)
- iii. $\bar{\varphi}_{f^{-1}}$ is constant along the leaves of \mathscr{W}^{u}

 $\sim \det A := \{ \bar{\varphi}_f = \bar{\varphi}_{f^{-1}} \} \subset M (\sim m(A^c) = 0)$ $\sim \text{Iet } \delta > 0$ be small s.t. $U = U_x(\delta) := \bigcup_{y \in \mathscr{W}^u(x,\delta)} \mathscr{W}^s(y,\delta)$ is the homeomorphic image of $[-\delta, \delta]^{\dim(E^u)} \times [-\delta, \delta]^{\dim(E^s)}$ (local product structure)

Absolute continuity of $\mathcal{W}^u \Longrightarrow$ for a.e. $x \in M$, $m_{\mathcal{W}^u(x,\delta)}$ Transverse absolute continuity of $\mathscr{W}^s \Longrightarrow m(\bigcup_{v \in A^c \cap \mathscr{W}})$ (see below for more details)

$$f^k(x), f^k(y)) = 0$$
 if $y \in \mathscr{W}^s(x) + \text{Cesàro}$

$$\mathcal{W}^{u}(x,\delta) = 0$$

$$\mathcal{W}^{u}(x,\delta) = 0, \text{ i.e., } m \Big(\cup_{y \in A \cap \mathcal{W}^{u}(x,\delta)} \mathcal{W}^{s}(y,\delta) \Big) = m(U)$$

Ergodicity of conservative Anosov diffeomorphisms

Indeed, consider an absolutely continuous foliation \mathscr{F} on U transverse to \mathscr{W}^s (e.g. \mathscr{W}^u or a smooth non-dynamical foliation) with $\mathscr{F}(x) = \mathscr{W}^u(x, \delta)$, and for $y \in U$, consider the holonomy map $H_y: \mathscr{W}^s(x, \delta) \to \mathscr{F}(y)$ along the leaves of \mathscr{W}^s $\neg \text{ for } m\text{-a.e. } y \in U, m_{\mathcal{F}(y)} \left(\bigcup_{y \in A^c \cap \mathscr{W}^u(x,\delta)} \mathscr{W}^s(y,\delta) \right) = m_{\mathcal{F}(y)} (H_v(A^c \cap \mathscr{W}^u(x,\delta))) = 0, \text{ and then } M_v(X,\delta) = 0$ $m(\bigcup_{y \in A^c \cap \mathscr{W}^u(x,\delta)} \mathscr{W}^s(y,\delta)) = 0$, by absolute continuity of \mathscr{F} $\mathscr{W}^{s}(z,\delta)$

Let now $z \in \bigcup_{y \in A \cap \mathscr{W}^u(x,\delta)} \mathscr{W}^s(y,\delta)$, i.e., $z \in \mathscr{W}^s(y,\delta), y \in A \cap \mathscr{W}^u(x,\delta)$:

$$\thicksim \bar{\varphi}_f(z) \stackrel{\text{i.}}{=} \bar{\varphi}_f(y) \stackrel{y \in A}{=} \bar{\varphi}_{f^{-1}}(y) \stackrel{\text{iii.}}{=} \bar{\varphi}_{f^{-1}}(y)$$

By connectedness, we conclude that $\bar{\varphi}_f$ is constant *m*-a.e.

-1(x), i.e., $\bar{\varphi}_f \operatorname{cst} m$ -a.e. on U (local ergodicity)

2. Global ergodicity: we have seen that for any $x \in M$, there exists a neighborhood $U_x \subset M$ of x where $\bar{\varphi}_f$ is m-a.e. constant

Sinai-Ruelle-Bowen (SRB) measures

What about the dissipative case? Still a way to describe the statistics of a « large » (for Lebesgue) set of orbits

 \mathcal{W}^{u} , the conditional measures $\{\mu_{x}^{\xi}\}_{x}$ are a.c. wrt $m_{\mathcal{W}^{u}(x)}$ for μ -a.e. $x \in M$

Proposition: any ergodic SRB measure μ is physical (Birkhoff + a.c. of $\mathcal{W}^{s}, \mathcal{W}^{u}$)

Proof: fix a measurable partition ξ subordinate to \mathcal{W}^{u} , with conditional measures $\{\mu_{x}^{\xi}\}_{x}$ μ ergodic $\prec \mu(\mathscr{B}(\mu)) = 1$ (by Birkhoff), hence for μ -a.e. $x, \mu_x^{\xi}(\mathscr{B}(\mu)) = 1$ as μ is SRB, for such x we have $m_{\mathcal{W}^{u}(x,\delta)}(\mathcal{B}(\mu)) = m_{\mathcal{W}^{u}(x,\delta)}(\mathcal{W}^{u}(x,\delta))$ (\star) Let $U := \bigcup_{y \in \mathcal{W}^u(x,\delta)} \mathcal{W}^s(y,\delta)$; note that for any $z \in \mathcal{W}^s(y,\delta)$, $y \in \mathcal{W}^u(x,\delta) \cap \mathcal{B}(\mu)$, we have $z \in \mathscr{B}(\mu)$; by transverse absolute continuity of \mathscr{W}^s and (\star) we conclude that (as in proof of local ergodicity for conservative Anosov diffeos.) *m*-a.e. $z \in U$ is in $\mathscr{B}(\mu)$

Theorem (Sinai-Ruelle-Bowen): let $\Lambda \subset U$ be a transitive attractor of a C^2 diffeomorphism f; then there exists a unique f-invariant Borel probability measure μ on Λ such that for any $f \in C^0(U, \mathbb{R})$, for *m*-a.e. $x \in U$, it holds

k =

An equivalent characterization of μ is that it is SRB. Moreover, (f, μ) is ergodic

Definition: (SRB measure) let μ be an f-invariant Borel probability measure. We say it is SRB if for every measurable partition ξ subordinate to

$$\int_{0}^{1} \varphi(f^{k}(x)) = \int_{U} \varphi \, d\mu$$

Proof of Sinai-Ruelle-Bowen result

a. Construction of μ + SRB property

Let $\Sigma := \mathcal{W}^{s}(x, \delta)$ be a stable disk, $\delta > 0$ small, let $U = U(\Sigma, \delta) := \bigcup_{y \in \Lambda \cap \Sigma} \mathcal{W}^u(s, \delta)$ (topological product for δ small enough) \sim canonical neighborhood We write $U = \bigcup_{\alpha} \mathscr{D}_{\alpha}$ the partition of U into local unstable disks

Fix $x_0 \in \Lambda$, let $L := \mathscr{W}_{loc}^u(x_0)$, and let $\mu_0 := \frac{m_L}{m_L(L)}$

For $k \ge 0$, let μ_k be the measure $(f^k)_*\mu_0$ living on $f^k(L)$ For any canonical neighborhood U, let U_k be the union of \mathscr{D}_{α} 's in U completely contained in $f^k(L)$ Let $\hat{\mu}_k = \hat{\mu}_{k,U} := \mathbf{1}_{U_k} \mu_k$; then $\mu_k(U) - \hat{\mu}_k(U) \to 0$ as $k \to +\infty$ (indeed, if $f^k(x) \in \mathscr{D}_{\alpha}$, with $x \in L$ not too close to ∂L , then $\mathscr{D}_{\alpha} \subset f^k(L)$)

Let μ be an accumulation point of the averages $\left(\frac{1}{n}\sum_{k=0}^{n-1}\mu_k\right)_n \sim \mu$ is *f*-invariant Moreover, for any canonical neighborhood *U*, $\left(\frac{1}{n}\sum_{k=0}^{n-1}\hat{\mu}_{k,U}\right)_n$ also converges to μ

 $f|_{\mathscr{W}^u}$ is uniformly expanding, and has uniformly bounded C^2 derivatives \prec by a distortion argument, $\exists \alpha, \beta > 0$ s.t. $\forall k \ge 0, \forall \mathcal{D}_{\alpha} \subset U_k$,

$$\alpha \leq \frac{d\hat{\mu}_{k,U}}{dm_{\mathcal{D}_{\alpha}}} \leq \beta$$

This bound also works for $\left(\frac{1}{n}\sum_{k=0}^{n-1}\hat{\mu}_{k,U}\right)_n$, thus for the accumulation point $\mu \sim \mu$ is SRB

Proof of Sinai-Ruelle-Bowen result

Definition: given $\nu \in \mathcal{M}_f$, we say that a point $x \in M$ is future generic wrt ν if it is in the basin $\mathscr{B}(\nu)$, i.e.

$$\forall \varphi \in C^0(M,\mathbb{R}),$$

we say it is past generic if it is future generic for f^{-1} , generic if it is future + past generic **Proposition:** (ergodic decomposition of invariant measures) let \mathscr{E}_f be the set of ergodic f-invariant Borel probability measures of fThen for any *f*-invariant Borel probability $\nu \in \mathcal{M}_f$, there is a Borel probability measure τ_{ν} on \mathscr{E}_f such that $\nu = \int_{\infty} \nu' d\tau_{\nu}(\nu')$ $\sim \nu$ -a.e. $x \in M$ is generic wrt some ergodic measure $\nu_{(x)} \in \mathscr{C}_f$ (by Birkhoff); denote this set by $G(\nu)$

b. Local ergodicity of (f, μ) : (genericity wrt same measure locally)

For any density point x of μ , $\exists V$ neighborhood of x, $\nu = \nu(x) \in \mathscr{C}_f$ s.t.

- i. μ -a.e. $z \in V$ is future generic wrt to ν
- ii. *m*-a.e. $z \in V$ is future generic wrt ν

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) = \int_M \varphi \, d\nu$$

Proof of Sinai-Ruelle-Bowen result $\mathscr{W}^{s}(y,\delta)$

Proof: let $U = \bigcup_{\alpha} \mathscr{D}_{\alpha}$ be a canonical neighborhood centered at x Disintegrate μ wrt to $\{\mu_{\mathcal{D}_{\alpha}}^{u}\}_{\alpha}$ wrt disks in U, and let \mathcal{W}_{0} be one of these disks s.t.

- $x \in V := \bigcup_{y \in \mathcal{W}_0} \mathcal{W}^s(y, \delta)$
- $m_{\mathcal{W}_0}$ -a.e. $y \in \mathcal{W}_0$ is generic wrt to some $\mu_{(y)}$ (follows from SRB property and the previous fact that $\mu(G(\mu)) = 1$, i.e., μ -a.e. $y \in M$ is generic wrt to some $\mu_{(y)}$)

But $\forall y, y' \in \mathscr{W}_0 \cap G(\mu)$, $\lim_{x \to +\infty} d(f^{-k}(y), f^{-k}(y')) = 0 \Longrightarrow$ past generic wrt same measure, i.e., $\mu'_{(y)} = \mu_{(y')} = \mathcal{V}$ Similarly, any $z \in V(\nu) := \bigcup_{y \in \mathcal{W}_0 \cap G(\mu)} \mathcal{W}^s(y, \delta)$ is future generic wrt ν Moreover, as $m_{\mathcal{W}_0}(\mathcal{W}_0 \cap G(\mu)) = 1$ and \mathcal{W}^s transversally a.c. $\Longrightarrow \forall \mathcal{D}_{\alpha} \subset U, m_{\mathcal{D}_{\alpha}}(\mathcal{D}_{\alpha} \cap V(\nu)) = 1$ + SRB property \implies for μ -a.e. $\mathscr{D}_{\alpha}, \mu^{\mu}_{\mathscr{D}_{\alpha}}(\mathscr{D}_{\alpha} \cap V(\nu)) = 1$, hence $\mu(V(\nu)) = \mu(V)$, and $m(V(\nu)) = m(V) \blacksquare$

- c. Global ergodicity: local ergodicity + topological transitivity of the attractor Indeed, any density point x has a neighborhood V_x where μ -a.e. point is future generic wrt some $\nu(x)$ Density points have full measure: μ -a.e. point is generic wrt ν , i.e., (f, μ) ergodic
- d. The measure μ is physical: follows from previous result for ergodic SRB

For any x, x', there exists $n \ge 0$ s.t. $V_x \cap f^{-n}(V_{x'}) \ne \emptyset$ open set where a.e. point is future generic to both $\nu(x), \nu(x') \rightarrow \nu(x) = \nu(x') = \nu(x') = \nu(x')$

