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Some notions of smooth ergodic theory
Let  be a  Riemannian compact connected manifold, with  
Let  be of class , preserving orientation, such that





  local diffeomorphism of degree  
 
Goal: describe the statistical behavior of orbits





 Do empirical measures  converge to a measure  ?


                                                        i.e., 


M C∞ ∂M = ∅
f : M → M Ck, k ≥ 1

∀ x ∈ M, m(Df(x)) := inf
v∈TxM∖{0}

∥Df(x)v∥
∥v∥

> 0

↝ f d ≥ 1

𝒪+
f (x) := {x, f(x), f2(x) = f ∘ f(x), …}

↝
1
n

n−1

∑
k=0

δfk(x) μ = μ(x)

1
n

n−1

∑
k=0

φ ∘ f k(x) →n→+∞ ∫M
φ dμ, ∀φ ∈ C0(M, ℝ)

Temporal averages 
(Birkhoff averages)

Spatial 
averages



• if so, which properties does the measure  have? 


• ergodicity: ,  or ?


• mixing: , ?


• conversely, given  ( ), which  do follow the statistics of ?


in other words, , i.e., 


Theorem: (Birkhof, 32) ,  such that





with  -a.e., and 


 if  ergodic,  -a.e., and then -a.e.  follows the statistics of  ( )


Question: does there exist  such that  
, Riemannian volume? (physical measure) 

 
Examples:  
     — when  is ergodic a.c. wrt to  with density  on an open set  (Birkhoff) 
     — when  for a sink  /  for the figure-eight attractor

μ

∀ A ∈ ℬ f −1(A) = A ⟹ μ(A) = 0 1

∀ A, B ∈ ℬ μ(A ∩ f −n(B)) →n→+∞ μ(A)μ(B)

μ ∈ ℳf := {ν Borel probability measure | f*ν = ν} ℳf ≠ ∅ x ∈ M μ

x ∈ ℬ(μ)
1
n

n−1

∑
k=0

δf k(x) → μ

∀φ ∈ L1(μ) ∃φ* ∈ ℒ1(μ)

1
n

n−1

∑
k=0

φ ∘ f k → φ* μ-a.e.

φ* ∘ f = φ* μ ∫m
φ* dμ = ∫M

φ dμ

↝ ( f, μ) φ* = ∫M
φ dμ μ μ x ∈ M μ μ(ℬ(μ)) = 1

U ⊃ supp(μ)
m(ℬ(μ) ∩ U) = m(U) > 0 m =

μ m > 0 U
μ = δx x μ = δp



A brief history, conservative/dissipative systems

• 1930s: Hadamard and Hopf  progress on ergodic properties of smooth systems (geodesic flow on negatively curved surfaces)


• 1950s: Kolmogorov, Arnold and Moser  obstructions to ergodicity for Hamiltonian systems (KAM theory)


• 1960s: work of Anosov and Sinai on hyperbolic systems


• 1970s: study of broader classes of systems with some hyperbolicity initiated by Brin, Pesin, Hirsch, Pugh, Shub…  
 partially hyperbolic systems / non-uniformly hyperbolic systems


Conservative/dissipative systems  
 
Each map  as above preserves the class of the measure  induced by the Riemannian metric:





• conservative systems: if  has an invariant measure a.c. with respect to 


• dissipative systems: each -invariant measure with full support has a part which is singular with respect to 

↝

↝

↝

f m

df*m
dm

(x) = ∑
y∈f −1(x)

det Df(y) dm(y)

f m

f m



 

Hamiltonian dynamics  
(examples: billiards, geodesic flows, -body problem…)


, endowed with 


Let  smooth, for an open set ,  
 flow induced by the vector field  such that 





The flow  preserves the levels  and , hence the volume  (Liouville measure)

n

M = ℝ2n = {(x1, ⋯, xn, y1, ⋯, yn)} ω =
n

∑
i=1

dxi ∧ dyi

H : U → ℝ U ⊂ M
↝ (Xt)t F ω(F, ⋅ ) = dH

∂xj

∂t
=

∂H
∂yj

,
∂yj

∂t
= −

∂H
∂xj

(Xt)t H−1(c) ω m =
n

∏
i=1

dxidyi

Example of conservative systems 
        



 
 

 with North pole - South pole dynamics between two fixed points ,   
 repelling ( ) and  attracting ( )


  is dissipative (and  is a physical measure)


Proof: let  be an -invariant measure with , 
and let  open neighborhood of , with 


 but for all , 





  
 

f : 𝕊1 → 𝕊1 N, S
N f′￼(N) > 1 S 0 < f′￼(S) < 1

↝ f δS

μ f μ({S}) = 0
I ⊂ 𝕊1∖{S} N μ(I) > 0

∩+∞
k=1 f −k(I) = {N} n ≥ 1

μ(∩n
k=1 f −k(I)) = μ( f −n(I)) = μ(I)

⟹ μ({N}) = μ(∩+∞
k=1 f −k(I)) = μ(I) > 0 ∎

N

S

Example of dissipative system 
        



 

Dominated splittings and cone-fields
Definition: an -invariant set  has a dominated splitting if  

, with


•  independent of , for 


• (invariance) , , for 


• (domination)  such that , ,  
 
                            

Definition: a cone-field  on an invariant set  is a map  where  is a cone,  
such that in local charts, the quadratic form  defining them can be chosen continuously and have the same signature 


  a cone-field  on  is contracted if there exists  s.t. for any , we have  

Theorem: (cone-field criterion) let ,  an invariant compact set, and fix ; then  has a contracted cone-field 
 of dimension  if and only if there exists a dominated splitting  with 

f Λ ⊂ M
TΛM = E1 ⊕ ⋯ ⊕ Ek

dim(Ei(x)) x i ∈ {1,⋯, k}

∀ x ∈ Λ Df(x)Ei(x) = Ei( f(x)) i ∈ {1,⋯, k}

∃ c > 0, λ ∈ (0,1) ∀ x ∈ Λ ∀i ∈ {1,⋯, k − 1}

∥Df n(x) |Ei
∥ < cλnm(Df n(x) |Ei+1

)

𝒞 Λ ⊂ M Λ ∋ x ↦ 𝒞(x) 𝒞(x) = {v ∈ TxM : Qx(v) ≥ 0}
{Qx}x∈Λ (d+, d−)

↝ 𝒞 Λ N ≥ 1 x ∈ ∩N
i=0 f −k(Λ) DfN(x)𝒞(x) ⊂ int(𝒞( fN(x)))

f ∈ Diff2(M) Λ ⊂ M d+ ≥ 1 Λ
𝒞 d+ TΛM = E− ⊕ E+ dim(E+) = d+



Foliations, absolute continuity

L

Let  be a smooth manifold of dimension  
 
Definition: for , a continuous -dimensional foliation  with  leaves of  is a partition of  
into  submanifolds  which locally depend continuously on  in the  topology 
 
Let  be the Riemannian volume in  
For any submanifold , let  be the induced Riemannian volume in  
 
Definition: let  be a foliation, let  be a foliation coordinate chart,  
let  be a  local transversal  
We say that  is absolutely continuous if for any such  and ,  

 measurable family of positive measurable function 
  (conditional densities) s.t.  meas. , 

                  

 in particular, conditional densities are automatically integrable

M n ≥ 1

1 ≤ k ≤ n k 𝒲 C1 M M
C1 𝒲(x) ∋ x x C1

m M
N ⊂ M mN N

𝒲 (U, h)
L = h({y} × Bn−k) C1

𝒲 L U
∃
fx : 𝒲(x) ∩ U =: 𝒲U(x) → ℝ ∀ A ⊂ U

m(A) = ∫L ∫𝒲U(x)
1A(x, y)fx(y) dm𝒲(x)(y)dmL(x)

↝



Hyperbolic Systems
• Let  be a smooth compact Riemannian manifold


• let  be a  (local) diffeomorphism,  (  in most of the following) 
or  (semi-)flow , , with generator 


Definition:  compact -invariant set is hyperbolic if it has a dominated  
splitting , where stable/unstable bundle /  are  
uniformly contracted/expanded, i.e.,  such that 

:


 


  in the case of a flow


•  integrate uniquely into -invariant foliations  (stable),  (unstable),  
Hölder continuous, absolutely continuous (a.c.) when 


• diffeomorphism/flow with : Anosov system

M

f : M → M Ck k ≥ 1 k ≥ 2
(Xt : M → M)t∈ℝ Ck k ≥ 1 X

Λ f
TM |Λ = Es ⊕ Eu Es Eu

∃ C > 0, 0 < λ < 1 < μ
∀x ∈ Λ, n ≥ 0

∥Df n(x)vs∥ ≤ cλn∥vs∥, vs ∈ Es(x)
∥Df n(x)vu∥ ≥ c−1μn∥vu∥, vu ∈ Eu(x)

↝ TM |Λ = Es ⊕ ℝX ⊕ Eu

Es, Eu f 𝒲s 𝒲u

k ≥ 2

Λ = M



Partially Hyperbolic Systems
•  compact Riemannian manifold


•   diffeomorphism, 


Definition:  is partially hyperbolic if there exists a dominated splitting  s.t. 
for , with , we have :





•  integrate uniquely to -invariant foliations  (stable),  (unstable), not necessarily  
,  are Hölder continuous, absolutely continuous when 

M

f : M → M Ck k ≥ 1

f TM = Es ⊕ Ec ⊕ Eu

c > 0, λs < μc ≤ λc < μu λs < 1 < μu ∀ x ∈ Λ, n ≥ 0

∥Df n(x)vs∥ ≤ cλn
s ∥vs∥, vs ∈ Es(x)

c−1μn
c ∥vc∥ ≤ ∥Df n(x)vc∥ ≤ cλn

c ∥vc∥, vc ∈ Ec(x)
c−1μn

u∥vu∥ ≤ ∥Df n(x)vu∥, vu ∈ Eu(x)

Es, Eu f 𝒲s 𝒲u Ec

𝒲s 𝒲u k ≥ 2



• hyperbolic set: Smale’s horseshoe 
 
 
 
 
 
 
 
 

• partially hyperbolic diffeomorphisms:


• time-one map  of an Anosov flow 


• , where  is hyperbolic 
 

X1 (Xt)t

A × Id A

• Anosov flows: geodesic flow on negatively curved 
surfaces 
 
 
 
 
 
 
 

• Anosov diffeomorphisms: Arnold’s cat map on  
 
 
 
 
 

𝕋2

Some (partially) hyperbolic systems 



Basic sets, attractors 
• a hyperbolic set  is called basic if it is transitive and locally maximal: 


, for a neighborhood  of     


•  is an attractor if there exists a neighborhood  of  such that


 and 


 
 

Basic properties:  
     — local product structure      
     —  
     —  

Λ

Λ = ∩n∈ℤ f −n(𝒰) 𝒰 Λ

Λ 𝒰 Λ

f(𝒰) ⊂ 𝒰 Λ = ∩n∈ℕ f n(𝒰)

Λ = ∪x∈Λ 𝒲u(x)
𝒰 ⊂ ∪x∈Λ 𝒲s(x)

𝒰 Λ

(Plykin attractor) 



 

Basic properties of hyperbolic systems
• sensitivity to initial conditions (« chaotic » systems)


• « good » understanding of statistical properties: 
      — ergodicity for  conservative systems  
      — existence of SRB measures for hyperbolic attractors 


• structural stability (Anosov '67) :


If  is hyperbolic for , then there exists a neighborhood  of  and 
 such that for all , 


 is hyperbolic for , 
 (topological conjugacy)


In the case of a hyperbolic flow , if  is -close to , there exists an orbit equivalence


• density of periodic orbits for basic sets 

C2

Λ f ∈ Diff1(M) 𝒰 ⊂ Diff1(M) f
h : 𝒰 → C0(Λ, M) g ∈ 𝒰

Λg := hg(Λ) g
hg ∘ f |Λ = g ∘ hg |Λ

(Xt)t (Yt)t C1 (Xt)t



1. Statistical properties 

• stable ergodicity for  conservative 
diffeomorphisms


• SRB measures: capture the 
statistical behavior of « many » orbits

C2

2. Properties of invariant foliations  

• absolute continuity/Hölder regularity of the 
foliations  and 


• transitivity of the pair   

𝒲s/u

𝒲s 𝒲u

(𝒲s, 𝒲u)

Use of foliations in smooth ergodic theory



Stable Manifold Theorem
Let ,  
Let  compact -invariant set with a partially hyperbolic splitting , ,  uniformly contracted


Definition: given  small, for each , define the strong stable set:


 

Theorem: (Stable Manifold Theorem, Hirsch-Pugh-Shub)


• for any , the strong stable set  is an injectively immersed -submanifold diffeomorphic to ,  
tangent to  at 


• the strong stable set does not depend on  as long as it is small enough


• for any , the strong stable sets  are either disjoint or coincide


• for  small, the ball  in  of center  and radius  depends continuously on  and  for the -topology

f ∈ Diffr(M) r ≥ 1
Λ ⊂ M f TΛM = Es ⊕ Ec dim(Es) ≥ 1 Es

ε > 0 x ∈ Λ

𝒲s(x) := {y ∈ M : ∃ c > 0 s . t . ∀n ≥ 0, d( f n(x), f n(y)) < ce−εnmin{m(Df n |Ec(x) ),1}}

x ∈ Λ 𝒲s(x) Cr ℝdim(Es)

Es(x) x

ε

x, y ∈ Λ 𝒲s(x), 𝒲s(y)

η > 0 𝒲s(x, η) 𝒲s(x) x η x f Cr



Proof of Stable Manifold Theorem: 
1) Plaque families

E(x)

Theorem: (Plaque Families, Hirsch-Pugh-Shub) 
 
Let , , let  compact -invariant set with a dominated splitting . Then, for every , there exists a  
embedding  such that:


• (tangency) for any , , and  is tangent to  at 


• (continuity) the embeddings  depend continuously on  in the -topology


• (local invariance) there exists  such that for , it holds 


Proof: 

a. Lift  to a  local diffeomorphism  from  to a neighborhood of  in  and glue it with  on the 
complement of  by a bump function to get a diffeomorphism 


Lemma: for any , there exists  such that 

f ∈ Diffr(M) r ≥ 1 Λ ⊂ M f TΛM = E ⊕ F x ∈ Λ C1

ıE(x) : E(x) ⊃ B(0,1) → M

x ∈ Λ ıE(x)(0) = x ıE(x)(B(0,1)) E(x) x

{ıE(x)}x x ∈ Λ C1

δ0 ∈ (0,1) x ∈ Λ f(ıE(x)(B(0,δ0))) ⊂ ıE( f(x))(B(0,1))

f Cr fx := exp−1
f(x) ∘ f ∘ expx B(0,α/2) ⊂ TxM 0 Tf(x)M Df(x)

B(0,α) ̂fx : TxM → Tf(x)M

ε > 0 α > 0 dC1( ̂fx, Df(x)) < ε



 
1) Plaque families

b. Let  be a cone-field along  that is contracted by  
Let  be a cone-field along  that is contracted by  

 on each tangent space , one obtains a constant cone field which coincides with  
  contracts  into  

 
Let  be the family of Lipschitz graphs tangent to  containing , i.e., the graphs of Lipschitz 
functions  such that  and  
 

 is complete for the distance   

(distance is bounded because graphs are uniformly Lipschitz)


Lemma:   
(projection on  is injective on the image of the graph) 

𝒞F F f
𝒞E E f −1

↝ TxM 𝒞E(x)
↝ ̂f −1

x 𝒞E( f(x)) 𝒞E(x)

Lx 𝒞E(x) 0
ψ : E(x) → F(x) ψ(0) = 0 (u, ψ(u)) − (v, ψ(v)) ∈ 𝒞E(x), ∀ u, v ∈ E(x)

↝ Lx d(ψ1, ψ2) := max
u∈E(x)

d(ψ1(u), ψ2(u))
∥u∥

̂f −1
x (Lf(x)) ⊂ Lx

E(x)



 
1) Plaque families

c.  Lemma: (contraction) for  large enough,  is a contraction


Proof: let  be the images by  of , and fix  
 & , for  

 
Let us assume that  for simplicity, i.e., , 


•  and , where  contracted by ,  
and  close to , hence





• ,  
, where  contracted by , hence





thus





 , by domination, hence uniform contraction for  large enough 

n ∈ ℕ ̂Fn
x := ( ̂ff n−1(x) ∘ ⋯ ∘ ̂fx)−1 : Lf n(x) → Lx

ψ′￼1, ψ′￼2
̂Fn
x ψ1, ψ2 ∈ Lf n(x) u ∈ E(x)

↝ (u, ψ′￼1(u)) = ̂Fn
x(v, ψ1(v)) (u, ψ′￼2(u)) = ̂Fn

x(w, ψ2(w)) v, w ∈ E( f n(x))

v = w (u, ψ′￼i(u)) = ̂Fn
x(v, ψi(v)) i = 1,2

(v,0) ∈ 𝒞E( f n(x)) (u,0) ∈ 𝒞E(x) 𝒞E( f n(x)) ̂Fn
x

̂Fn
x (Df n(x))−1

∥v∥ ≤ ∥Df n(x) |E∥eεn∥u∥

(0,ψ1(v) − ψ2(v)) = (v, ψ1(v)) − (v, ψ2(v)) ∈ 𝒞F( f n(x))
(0,ψ′￼1(u) − ψ′￼2(u)) = (u, ψ′￼1(u)) − (u, ψ′￼2(u)) ∈ 𝒞F(x) 𝒞F(x) ( ̂Fn

x)−1

d(ψ1(v), ψ2(v)) ≥ m(Df n(x) |F )e−εnd(ψ′￼1(u), ψ′￼2(u))

d(ψ′￼1(u), ψ′￼2(u))
∥u∥

≤ e2εn ∥Df n(x) |E∥
m(Df n(x) |F )

d(ψ1(v), ψ2(v))
∥v∥

↝ d(ψ′￼1, ψ′￼2) ≤ cλne2εnd(ψ1, ψ2) n

̂Fn
x

ψ1
ψ2

ψ′￼1

ψ′￼2



d. Let , endowed with the distance given by supremum distance on each  

 product map  acts on   
and (after iteration) it is a contraction 

 there exists a fixed point  
 let then define the embedding  

 
As  and  sends  to , for  small enough,


, i.e.,


 

ℒx := ∏
k∈ℤ

Lfk(x) Lfk(x)

↝ ( ̂f −1
fk(x))k∈ℤ : (ψfk(x))k∈ℤ ↦ ( ̂f −1

fk(x)(ψfk+1(x)))k∈ℤ ℒx

↝ (ψfk(x))k∈ℤ
↝ ıE(x) : E(x) → M, u ↦ expx(u, ψx(u))

̂fx |B(0,α/2) ≡ fx := exp−1
f(x) ∘ f ∘ expx |B(0,α/2)

̂fx ψx ψf(x) δ0 > 0

f(ıE(x)(B(0,δ0))) = expf(x)
̂fx(graph(ψx) |B(0,δ0) ) ⊂ expf(x)(graph(ψf(x)) |B(0,1) )

f(ıE(x)(B(0,δ0))) ⊂ ıE( f(x))(B(0,1))

 
1) Plaque families



e. By the cone-field criterion for the maps , at each  there exists a splitting  s.t.  
 

 := vectors  tgt at  whose iterates under  remain in the cones  
 := vectors  tgt at  whose iterates under  remain in the cones  

 
Since  is Lipschitz, it is differentiable at almost every , hence has a tangent space whose 
iterates remain in the cones  

 tangent space in  
 Since  depends continuously on ,  is  and tangent to  everywhere 
  is tangent to  at 


f. By construction,  is close to  for  arbitrary, where  
Fixing  and considering  for  close to , it implies that  and  are close on  

̂fx u ∈ TxM ̂E(u) ⊕ ̂F(u)

̂E(u) (vk)k∈ℤ u ( ̂ffk(x))k∈ℤ (𝒞E( f k(x)))k∈ℤ
̂F(u) (vk)k∈ℤ u ( ̂ffk(x))k∈ℤ (𝒞F( f k(x)))k∈ℤ

ψx u ∈ TxM
(𝒞E( f k(x)))k∈ℤ

⟹ ̂E(u)
↝ ̂E(u) u ψx C1 ̂E(u)
↝ ıE(x)(B(0,1)) E(x) 0

ψx
̂Fn
x(ψ′￼) ψ′￼ ∈ ℒf n(x)

̂Fn
x := ( ̂ff n−1(x) ∘ ⋯ ∘ ̂fx)−1

n ψ′￼ := ψf−n(x′￼) x′￼ x ψx ψx′￼
B(0,1) ∎

 
1) Plaque families



Proof of Stable Manifold Theorem: 
2) Coherence argument

Corollary: let , , let  compact -invariant set with a partially hyperbolic splitting  
Let  be the embedding of  given by the Plaque families Theorem. Fix  large,  small, and let 





A. For any , , 


B. For any , , 


C. For any , 


Proof: for  small enough, the disc  is almost linear, and the action of  is close to that of   
A. is proved inductively, checking by the local invariance that  
B. follows from A. 
C. by A. and the domination, we deduce that . Let us show the other inclusion:

f ∈ Diffr(M) r ≥ 1 Λ ⊂ M f TΛM = Es ⊕ Ec

ıEs(x) Es(x) N ∈ ℕ ε, δ0 > 0

𝒲s
loc(x) := ıEs(x)(B(0,δ0))

x ∈ Λ n ≥ 0 diam( f n(𝒲s
loc(x))) ≤ enε

[n/N]

∏
k=0

∥DfkN(x) |Es∥

x ∈ Λ n ≥ N f n(𝒲s
loc(x)) ⊂ 𝒲s

loc( f n(x))

x ∈ Λ 𝒲s(x) = ∪k≥0 f −k(𝒲s
loc( f k(x)))

δ0 > 0 𝒲s
loc(x) f n Df n |Es(x)

f n(𝒲s
loc(x)) ⊂ ıEs( f n(x))(B(0,1))

𝒲s(x) ⊃ ∪k≥0 f −k(𝒲s
loc( f k(x)))



Proof of Stable Manifold Theorem: 
2) Coherence argument

Coherence argument: let ; up to iteration, assume that their forward iterates remain at distance  
 
Let  be a small disk containing  and  and tangent to a contracted cone field   

 forward iterates of  remain tangent to  
 
For  small, and  large, let us estimate  
the distance between the points :


• 


• 


• 


By the domination, and the triangle inequality, we get a contradiction 

z ∈ 𝒲s(x) ≪ δ0

𝒟 z y ∈ 𝒲s
loc(x) 𝒞Ec

↝ 𝒟 𝒞Ec

ε > 0 n ∈ ℕ
f n(x), f n(y), f n(z)

d( f n(x), f n(y)) < c1enε∥Df n |Es(x)∥

d( f n(x), f n(z)) < c2e−εnm(Df n |Ec(x) )

d( f n(y), f n(z)) > c3e− ε
2 nm(Df n |Ec(x) )

∎

𝒲s
loc(x) 𝒲s

loc( f n(x)) 𝒲s( f n(x))𝒲s(x)

x

f n(x)

y
z

f n(y)
f n(z)f n

𝒟



Absolute continuity of 𝒲s, 𝒲u

Let  be a smooth manifold of dimension  
Let  be a foliation of , let  be a foliation coordinate chart, and let  be two  local transversals, 


Definition: the holonomy map  is the homeomorphism , for  
 
 
 
 
 
 
 
 
 
Definition: the foliation  is transversely absolutely continuous if the holonomy map  is absolutely continuous for any foliation chart 
and any transversals , i.e., there exists a positive measurable function  (the Jacobian of ) such that for any 
measurable subset ,


  

 
 

M n ≥ 1
𝒲 M (U, h) Li = h({yi} × Bn−k) C1 i = 1,2

H = HL1,L2
: L1 → L2 h(y1, z) ↦ h(y2, z) z ∈ Bn−k

𝒲 H
L1, L2 J : L1 → ℝ H

A ⊂ L1

mL2
(H(A)) = ∫L1

1AJ(z) dmL1
(z)



Proposition: if a foliation  is transversely absolutely continuous, then it is absolutely continuous


Proof: let  be a foliation coordinate chart on , and let  be a  local transversal 
Let  be an  dimensional -foliation such that  and  

  is absolutely continuous and transversally absolutely continuous 
Denote by  the densities for  (continuous, hence measurable) 
 
For any measurable set , by Fubini,





Let  be the holonomy map along the leaves of  from  to  
Let  be the Jacobian of 


𝒲

(U, h) M L = h({y} × Bn−k) C1

𝒢 n − k C1 L = 𝒢U(x) := 𝒢(x) ∩ U U = ∪y∈𝒲U(x) 𝒢U(y)
↝ 𝒢

{gy( ⋅ )}y 𝒢

A ⊂ U

m(A) = ∫𝒲U(x) ∫𝒢U(y)
1A(y, z)gy(z) dm𝒢(y)(z)dm𝒲(x)(y)

Hy 𝒲 𝒢U(x) = L 𝒢U(y)
Jy( ⋅ ) Hy

↝ ∫𝒢U(y)
1A(y, z)gy(z) dm𝒢(y)(z) = ∫L

1A(Hy(s))Jy(s)gy(Hy(s)) dmL(s)

Transverse absolute continuity 



Change order of integration in








Let  be the holonomy map along the leaves of  from  to , , and let  be the Jacobian of  
 
Using a change of variables , transform integral over  into integral over :





m(A) = ∫𝒲U(x) ∫𝒢U(y)
1A(y, z)gy(z) dm𝒢(y)(z)dm𝒲(x)(y)

↝ m(A) = ∫L ∫𝒲U(x)
1A(Hy(s))Jy(s)gy(Hy(s)) dm𝒲(x)(y)dmL(s)

H̄s 𝒢 𝒲U(x) 𝒲U(s) s ∈ L J̄s( ⋅ ) H̄s

r = Hy(s), y = H̄−1
s (r) 𝒲U(x) 𝒲U(s)

∫𝒲U(x)
1A(Hy(s))Jy(s)gy(Hy(s)) dm𝒲(x)(y) = ∫𝒲U(s)

1A(r)Jy(s)gy(r)J̄−1
s (r) dm𝒲(s)(r)

↝ m(A) = ∫L ∫𝒲U(s)
1A(r)Jy(s)gy(r)J̄−1

s (r) dm𝒲(s)(r)dmL(s) ∎

Transverse absolute continuity 



Proof of absolute continuity of  𝒲s, 𝒲u

For subspaces , let           (  are -transverse if ) 
 
Lemma: let  be a smooth -dimensional distribution on a compact subset of  

, there exists  s.t. if  are two -dim.  submanifolds  
with a smooth holonomy map  along  s.t. for all , 


            ,           ,  
            ,           , 


then the Jacobian of  is smaller than  
 
Proof: only the first derivatives of  affect the Jacobian of   

 it is equal to the Jacobian of the holonomy map  along  
After linear change of coordinates (depending only on ), we may assume that in the new coordinates ,





for some  matrix  whose norm depends only on ,





for some  matrix  which is  in , 

A, B ⊂ ℝN Θ(A, B) := min{∥v − w∥ : v ∈ A, ∥v = 1∥, w ∈ B, ∥w∥ = 1} A, B θ Θ(A, B) ≥ θ > 0

̂E k ℝN

∀ ξ > 0, ε > 0 δ > 0 Q1, Q2 ⊂ ℝN N − k C1

Ĥ : Q1 → Q2
̂E x ∈ Q1

Θ(TxQ1, ̂E(x)) ≥ ξ Θ(TĤ(x)Q2, ̂E(x)) ≥ ξ
dist(TxQ1, TĤ(x)Q2) ≤ δ ∥Ĥ(x) − x∥ ≤ δ

Ĥ 1 + ε

Q1, Q2 Ĥ
↝ H̄ : TxQ1 → TĤ(x)Q2

̂E
ξ (u, v) ∈ ℝN

x = (0,0), T(0,0)Q1 = {v = 0}, Ĥ(x) = (0,v0), ∥v0∥ = ∥Ĥ(x) − x∥, T(0,v0)Q2 = {v = v0 + Bu}

k × (N − k) B δ

̂E(0,0) = {u = 0}, ̂E(w,0) = {u = w + A(w)v}

(N − k) × k A(w) C1 w A(0) = 0



Proof of absolute continuity of  𝒲s, 𝒲u







 Image of  under  is  

Norm of  bounded from above in terms of   enough to estimate  at 


 
 




and then for , (recall , )


 

x = (0,0), T(0,0)Q1 = {v = 0}, Ĥ(x) = (0,v0), ∥v0∥ = ∥Ĥ(x) − x∥, T(0,v0)Q2 = {v = v0 + Bu}

̂E(0,0) = {u = 0}, ̂E(w,0) = {u = w + A(w)v}

↝ (w,0) Ĥ {u = w + A(w)v} ∩ {v = v0 + Bu}

B ξ ↝
∂u
∂w

w = 0

u = w + A(w)v0 + A(w)Bu

∂u
∂w

= I +
∂A(w)

∂w
v0 +

∂A(w)
∂w

Bu + A(w)B
∂u
∂w

w = 0 u(0) = 0 A(0) = 0

∂u
∂w

|w=0 = I +
∂A(w)

∂w
|w=0 v0 ∎



Proof of absolute continuity of  𝒲s, 𝒲u

Theorem: the stable and unstable foliations  of a  Anosov diffeomorphism are transversely absolutely continuous 
 
Proof: let  be a  Anosov diffeomorphism with stable and unstable distributions , , ,  s.t. :





We will focus on   idea: uniformly approximate holonomy maps by continuous maps with uniformly bounded Jacobians 
 let  be a smooth distribution that approximate the continuous distribution  


We assume that . By compactness, for some , , for all , 
and there exist foliation charts  of    s.t. ,  compact submanifold of  s.t. 


•  intersects transversely each local stable leaf of 


• , for all 


• 


then for any subspace  with , , with 

𝒲s, 𝒲u C2

f : M → M C2 Es Eu c > 0 0 < λ < 1 < μ ∀x ∈ Λ, n ≥ 0

∥Df n(x)vs∥ ≤ cλn∥vs∥, vs ∈ Es(x)
∥Df n(x)vu∥ ≥ c−1μn∥vu∥, vu ∈ Eu(x)

𝒲s ↝
↝ ̂Es Es

M ⊂ ℝN θ0 > 0 Θ(Es(x), Eu(x)) ≥ θ0 x ∈ M
(Ui, hi)l

i=1 𝒲s ↝ ∃ ϵ, δ > 0 ∀ y ∈ Uj ∀ L ⊂ Uj Uj

L Uj

Θ(TzL, Es) >
θ0

3
z ∈ L

dist(y, L) < δ

E ⊂ ℝN dist(E, Es(y)) < ϵ y + E ⋔ L = {π(y)} ∥y − π(y)∥ <
6δ
θ0



Let  be a foliation coordinate chart,  local transversals in  with holonomy map  (along the leaves of ),  
let  and  be the maps given by


,             


For , , ; it holds , 


If  is close enough to , it is uniformly transverse to , hence 


The angle , hence


, i.e.  converges uniformly to  as 

(U, h) L1, L2 U H : L1 → L2 𝒲s

Ĥ : f n(L1) → f n(L2) Hn : L1 → L2

Ĥ : f n(x) ↦ ( f n(x) + ̂Es( f n(x))) ⋔ f n(L2) Hn : x ↦ f −n(Ĥ( f n(x)))

x1 ∈ L1 x2 = Hn(x1) yi = f n(xi), i = 1,2 d( f k(x1), f k(x2)) ≤ cλkd(x1, x2) ∀ k ≥ 0

̂Es Es f n(L1), f n(L2) d(Ĥ( f n(x1)), f n(H(x1))) ≤ c1d( f n(x1, f n(H(x1))) ≤ c1cλnd(x1, H(x1))

∠(x2 − x1, H(x1) − x1) ≲ ( λ
μ )

n

d(Hn(x1), H(x1)) ≤ c2 ( λ
μ )

n

d(x1, H(x1)) Hn H n → + ∞

Proof of absolute continuity of  𝒲s, 𝒲u



Proof of absolute continuity of  𝒲s, 𝒲u

Lemma: the Jacobians of  are uniformly bounded 
 
Proof: by previous estimates, , for   
Let  be the Jacobian of  in the direction of , for ,  
Let  be the Jacobian of , 
Let  the Jacobian of  (it is uniformly bounded by the previous lemma)





 it remains to bound  from above:  

follows from , and Lipschitz continuity of  


End of the proof of a.c.: by the previous lemma,  s.t. for any measurable set ,  
Enough to work with balls: let  be a ball in ; for  small,  large, , 


 
 

Hn

d( f k(x1), f k(x2)) ≤ c3λk k ≥ 0
J( f k(xi)) f Tfk(xi) f k(Li) i = 1,2 k ≥ 0
Jn Hn

̂J Ĥ

↝ Jn(x1) =
n−1

∏
k=0

(J( f k(x2)))−1 ̂J( f n(x1))
n−1

∏
k=0

J( f k(x1))

↝
n−1

∏
k=0

J( f k(x1))
J( fk(x2))

dist(Tfk(x1) f k(L1), Tfk(x2) f k(L2)) ≤ c4λαk J ∎

∃J > 0 A ⊂ L1 mL2
(Hn(A)) ≤ JmL1

(A)
B(x, r) ⊂ L1 L1 δ > 0 n ≥ 0 H(B(x, r − δ)) ⊂ Hn(B(x, r))

⟹ mL2
(H(B(x, r − δ))) ≤ mL2

(Hn(B(x, r))) ≤ JmL1
(B(x, r))

⟹ mL2
(H(B(x, r))) = lim

δ→0
mL2

(H(B(x, r − δ))) ≤ JmL1
(B(x, r)) ∎



Ergodicity of conservative Anosov 
diffeomorphisms

Theorem: (Anosov, Sinai ’67) if  is a  conservative Anosov diffeomorphism ( ,  volume) on a 
compact connected Riemannian manifold , then  is ergodic  
 
Proof: (Hopf argument) , let 





Birkhoff’s Theorem  , where  is the projection 


 


Claim: to show that  is ergodic, enough to show that ,  a.e. ( ) 

Proof: since  is continuous, and  is dense in , we thus have 

f : M → M C2 f*m = m m
M f

∀ φ ∈ L2(M, ℝ)

φ̄f := lim sup
n→+∞

1
n

n−1

∑
k=0

φ ∘ f k

⟹ φ̄f = πf(φ) πf

πf : L2(M, ℝ) → L2
f (M, ℝ) := {ψ ∈ L2(M, ℝ) : ψ ∘ f = ψ}

f ∀ φ ∈ C0(M, ℝ) φ̄f = cst = ∫M
φ dm

πf C0(M, ℝ) L2(M, ℝ)
πf(L2(M, ℝ)) = L2

f (M, ℝ) = {cst fcts} ∎



1. Local ergodicity: fix ; then  is locally constant 
Key remarks:


i.  is constant along the leaves of  (  if  + Cesàro)


ii. ( -invariance  -invariance)


iii.  is constant along the leaves of 


 let  ( ) 
 let  be small s.t.  is the  

homeomorphic image of  (local product structure) 
 
Absolute continuity of   for a.e. ,  
Transverse absolute continuity of   , i.e.,  
(see below for more details)

φ ∈ C0(M, ℝ) φ̄f

φ̄f 𝒲s ← lim
k→+∞

d( f k(x), f k(y)) = 0 y ∈ 𝒲s(x)

φ̄f = φ̄f−1 a . e . f ⇔ f −1

φ̄f−1 𝒲u

↝ A := {φ̄f = φ̄f−1} ⊂ M ↝ m(Ac) = 0
↝ δ > 0 U = Ux(δ) := ∪y∈𝒲u(x,δ) 𝒲s(y, δ)

[−δ, δ]dim(Eu) × [−δ, δ]dim(Es)

𝒲u ⟹ x ∈ M m𝒲u(x,δ)(Ac ∩ 𝒲u(x, δ)) = 0
𝒲s ⟹ m( ∪y∈Ac∩𝒲u(x,δ) 𝒲s(y, δ)) = 0 m( ∪y∈A∩𝒲u(x,δ) 𝒲s(y, δ)) = m(U)

Ergodicity of conservative Anosov 
diffeomorphisms



Indeed, consider an absolutely continuous foliation  on  transverse to  (e.g.  or a smooth non-dynamical foliation) 
with , and for , consider the holonomy map  along the leaves of   

 for -a.e. , , and then 
, by absolute continuity of 


 

 
 
Let now , i.e., :


, i.e., -a.e. on  (local ergodicity)


2. Global ergodicity: we have seen that for any , there exists a neighborhood  of  where  is -a.e. constant 
By connectedness, we conclude that   is constant -a.e. 

ℱ U 𝒲s 𝒲u

ℱ(x) = 𝒲u(x, δ) y ∈ U Hy : 𝒲s(x, δ) → ℱ(y) 𝒲s

↝ m y ∈ U mℱ(y)( ∪y∈Ac∩𝒲u(x,δ) 𝒲s(y, δ)) = mℱ(y)(Hy(Ac ∩ 𝒲u(x, δ))) = 0
m( ∪y∈Ac∩𝒲u(x,δ) 𝒲s(y, δ)) = 0 ℱ

z ∈ ∪y∈A∩𝒲u(x,δ) 𝒲s(y, δ) z ∈ 𝒲s(y, δ), y ∈ A ∩ 𝒲u(x, δ)

↝ φ̄f(z) i.= φ̄f(y) y∈A= φ̄f−1(y) iii.= φ̄f−1(x) φ̄f cst m U

x ∈ M Ux ⊂ M x φ̄f m
φ̄f m ∎

Ergodicity of conservative Anosov 
diffeomorphisms



Sinai-Ruelle-Bowen (SRB) measures
What about the dissipative case? Still a way to describe the statistics of a « large » (for Lebesgue) set of orbits


Definition: (SRB measure) let  be an -invariant Borel probability measure. We say it is SRB if for every measurable partition  subordinate to 
, the conditional measures  are a.c. wrt  for -a.e. 


Proposition: any ergodic SRB measure  is physical (Birkhof + a.c. of ) 
 
Proof: fix a measurable partition  subordinate to , with conditional measures   

 ergodic  (by Birkhoff), hence for -a.e. ,  
as  is SRB, for such  we have  
Let ; note that for any , ,  
we have ; by transverse absolute continuity of  and  we conclude that 
(as in proof of local ergodicity for conservative Anosov diffeos.) -a.e.  is in  


Theorem (Sinai-Ruelle-Bowen): let  be a transitive attractor of a  diffeomorphism ; then there exists a unique -invariant Borel 
probability measure  on  such that for any , for -a.e. , it holds





An equivalent characterization of  is that it is SRB. Moreover,  is ergodic

μ f ξ
𝒲u {μξ

x}x m𝒲u(x) μ x ∈ M

μ 𝒲s, 𝒲u

ξ 𝒲u {μξ
x}x

μ ↝ μ(ℬ(μ)) = 1 μ x μξ
x(ℬ(μ)) = 1

μ x m𝒲u(x,δ)(ℬ(μ)) = m𝒲u(x,δ)(𝒲u(x, δ)) ( ⋆ )
U := ∪y∈𝒲u(x,δ) 𝒲s(y, δ) z ∈ 𝒲s(y, δ) y ∈ 𝒲u(x, δ) ∩ ℬ(μ)

z ∈ ℬ(μ) 𝒲s ( ⋆ )
m z ∈ U ℬ(μ) ∎

Λ ⊂ U C2 f f
μ Λ f ∈ C0(U, ℝ) m x ∈ U

lim
k→+∞

1
n

n−1

∑
k=0

φ( f k(x)) = ∫U
φ dμ

μ ( f, μ)



Proof of Sinai-Ruelle-Bowen result

U

f k(L)L
f k

a. Construction of  + SRB property


Let  be a stable disk,  small,  
let  (topological product for  small enough)  canonical neighborhood 
We write  the partition of  into local unstable disks


Fix , let , and let  

For , let  be the measure  living on  
For any canonical neighborhood , let  be the union of ’s in  completely contained in  
Let ; then  as  
(indeed, if , with  not too close to , then )


Let  be an accumulation point of the averages    is -invariant  

Moreover, for any canonical neighborhood ,  also converges to  

 is uniformly expanding, and has uniformly bounded  derivatives  
 by a distortion argument,  s.t.  , ,


                                              


This bound also works for , thus for the accumulation point    is SRB 

μ

Σ := 𝒲s(x, δ) δ > 0
U = U(Σ, δ) := ∪y∈Λ∩Σ 𝒲u(s, δ) δ ↝

U = ∪α 𝒟α U

x0 ∈ Λ L := 𝒲u
loc(x0) μ0 :=

mL

mL(L)
k ≥ 0 μk ( f k)*μ0 f k(L)

U Uk 𝒟α U f k(L)
̂μk = ̂μk,U := 1Uk

μk μk(U) − ̂μk(U) → 0 k → + ∞
f k(x) ∈ 𝒟α x ∈ L ∂L 𝒟α ⊂ f k(L)

μ ( 1
n

n−1

∑
k=0

μk)n
↝ μ f

U ( 1
n

n−1

∑
k=0

̂μk,U)n
μ

f |𝒲u C2

↝ ∃α, β > 0 ∀ k ≥ 0 ∀ 𝒟α ⊂ Uk

α ≤
d ̂μk,U

dm𝒟α

≤ β

( 1
n

n−1

∑
k=0

̂μk,U)n
μ ↝ μ ∎



Proof of Sinai-Ruelle-Bowen result
Definition: given , we say that a point  is future generic wrt  if it is in the basin , i.e.


,       


we say it is past generic if it is future generic for , generic if it is future + past generic  

Proposition: (ergodic decomposition of invariant measures) let  be the set of ergodic -invariant Borel probability measures of  

Then for any -invariant Borel probability , there is a Borel probability measure  on  such that  

 -a.e.  is generic wrt some ergodic measure  (by Birkhof); denote this set by 


b. Local ergodicity of : (genericity wrt same measure locally)


For any density point  of ,  neighborhood of ,  s.t.


i. -a.e.  is future generic wrt to 


ii. -a.e.  is future generic wrt 

ν ∈ ℳf x ∈ M ν ℬ(ν)

∀ φ ∈ C0(M, ℝ) lim
n→+∞

1
n

n−1

∑
k=0

φ( f k(x)) = ∫M
φ dν

f −1

ℰf f f

f ν ∈ ℳf τν ℰf ν = ∫ℰf

ν′￼dτν(ν′￼)

↝ ν x ∈ M ν(x) ∈ ℰf G(ν)

( f, μ)

x μ ∃ V x ν = ν(x) ∈ ℰf

μ z ∈ V ν

m z ∈ V ν



Proof of Sinai-Ruelle-Bowen result
Proof: let  be a canonical neighborhood centered at  
Disintegrate  wrt to  wrt disks in , and let  be one of these disks s.t.


• 


• -a.e.  is generic wrt to some   
(follows from SRB property and the previous fact that ,  
i.e., -a.e.  is generic wrt to some ) 


But ,   past generic wrt same measure, i.e.,  

Similarly, any  is future generic wrt  
Moreover, as  and  transversally a.c.  ,  
+ SRB property  for -a.e. , , hence , and  


c. Global ergodicity: local ergodicity + topological transitivity of the attractor 
Indeed, any density point  has a neighborhood  where -a.e. point is future generic wrt some  
For any , there exists  s.t.  open set where a.e. point is future generic to both ,   
Density points have full measure: -a.e. point is generic wrt , i.e.,  ergodic 


d. The measure  is physical: follows from previous result for ergodic SRB 

U = ∪α 𝒟α x
μ {μu

𝒟α
}α U 𝒲0

x ∈ V := ∪y∈𝒲0
𝒲s(y, δ)

m𝒲0
y ∈ 𝒲0 μ(y)

μ(G(μ)) = 1
μ y ∈ M μ(y)

∀ y, y′￼∈ 𝒲0 ∩ G(μ) lim
n→+∞

d( f −k(y), f −k(y′￼)) = 0 ⟹ μ(y) = μ(y′￼) =: ν

z ∈ V(ν) := ∪y∈𝒲0∩G(μ) 𝒲s(y, δ) ν
m𝒲0

(𝒲0 ∩ G(μ)) = 1 𝒲s ⟹ ∀ 𝒟α ⊂ U m𝒟α
(𝒟α ∩ V(ν)) = 1

⟹ μ 𝒟α μu
𝒟α

(𝒟α ∩ V(ν)) = 1 μ(V(ν)) = μ(V ) m(V(ν)) = m(V ) ∎

x Vx μ ν(x)
x, x′￼ n ≥ 0 Vx ∩ f −n(Vx′￼) ≠ ∅ ν(x) ν(x′￼) ↝ ν(x) = ν(x′￼) =: ν

μ ν ( f, μ)

μ ∎


