Some notions of smooth ergodic theory

School and Workshop on Ergodic Theory and Parabolic Dynamics IMPAN, Warsaw

Martin Leguil

Université de Picardie Jules Verne, Amiens, France

Main references

- Sylvain Crovisier, Rafael Potrie: Introduction to partially hyperbolic dynamics (School on Dynamical Systems, ICTP, Trieste, Italy), 2015
- Amie Wilkinson: Smooth ergodic theory, Mathematics of complexity and dynamical systems, Vols. 1-3, 1533-1547, Springer, New York, 2012
- Lai-Sang Young: Ergodic theory of differentiable dynamical systems. Real and complex dynamical systems (Hillerød, 1993), 293-336, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 464, Kluwer Acad. Publ., Dordrecht, 1995
- Michael Brin, Garrett Stuck: Introduction to dynamical systems. Cambridge University Press, Cambridge, 2002. xii+240 pp.

Some notions of smooth ergodic theory

Let M be a C^{∞} Riemannian compact connected manifold, with $\partial M=\varnothing$
Let $f: M \rightarrow M$ be of class $C^{k}, k \geq 1$, preserving orientation, such that

$$
\forall x \in M, \quad m(D f(x)):=\inf _{v \in T_{x} M \backslash\{0\}} \frac{\|D f(x) v\|}{\|v\|}>0
$$

$\leadsto f$ local diffeomorphism of degree $d \geq 1$
Goal: describe the statistical behavior of orbits

$$
\mathcal{O}_{f}^{+}(x):=\left\{x, f(x), f^{2}(x)=f \circ f(x), \ldots\right\}
$$

\leadsto Do empirical measures $\frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^{k}(x)}$ converge to a measure $\mu=\mu_{(x)} ?$

$$
\text { i.e., } \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}(x) \rightarrow_{n \rightarrow+\infty} \int_{M} \varphi d \mu, \quad \forall \varphi \in C^{0}(M, \mathbb{R})
$$

- if so, which properties does the measure μ have?
- ergodicity: $\forall A \in \mathscr{B}, f^{-1}(A)=A \Longrightarrow \mu(A)=0$ or 1 ?
- mixing: $\forall A, B \in \mathscr{B}, \mu\left(A \cap f^{-n}(B)\right) \rightarrow_{n \rightarrow+\infty} \mu(A) \mu(B)$?
- conversely, given $\mu \in \mathscr{M}_{f}:=\left\{\nu\right.$ Borel probability measure $\left.\mid f_{* \nu}=\nu\right\}\left(\mathscr{M}_{f} \neq \varnothing\right)$, which $x \in M$ do follow the statistics of μ ?

$$
\text { in other words, } x \in \mathscr{B}(\mu) \text {, i.e., } \frac{1}{n} \sum_{k=0}^{n-1} \delta_{f^{k}(x)} \rightarrow \mu
$$

Theorem: (Birkhoff, 32) $\forall \varphi \in L^{1}(\mu), \exists \varphi^{*} \in \mathscr{L}^{1}(\mu)$ such that

$$
\frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k} \rightarrow \varphi^{*} \mu \text {-a.e. }
$$

with $\varphi^{*} \circ f=\varphi^{*} \mu$-a.e., and $\int_{m} \varphi^{*} d \mu=\int_{M} \varphi d \mu$
\leadsto if (f, μ) ergodic, $\varphi^{*}=\int_{M} \varphi d \mu \mu$-a.e., and then μ-a.e. $x \in M$ follows the statistics of $\mu(\mu(\mathscr{B}(\mu))=1)$

Question: does there exist $U \supset \operatorname{supp}(\mu)$ such that $m(\mathscr{B}(\mu) \cap U)=m(U)>0, m=$ Riemannian volume? (physical measure)

Examples:

- when μ is ergodic a.c. wrt to m with density >0 on an open set U (Birkhoff)
- when $\mu=\delta_{x}$ for a sink $x / \mu=\delta_{p}$ for the figure-eight attractor

A brief history, conservative/dissipative systems

- 1930s: Hadamard and Hopf \leadsto progress on ergodic properties of smooth systems (geodesic flow on negatively curved surfaces)
- 1950s: Kolmogorov, Arnold and Moser \leadsto obstructions to ergodicity for Hamiltonian systems (KAM theory)
- 1960s: work of Anosov and Sinai on hyperbolic systems
- 1970s: study of broader classes of systems with some hyperbolicity initiated by Brin, Pesin, Hirsch, Pugh, Shub...
\leadsto partially hyperbolic systems / non-uniformly hyperbolic systems
Conservative/dissipative systems

Each map f as above preserves the class of the measure m induced by the Riemannian metric:

$$
\frac{d f_{*} m}{d m}(x)=\sum_{y \in f^{-1}(x)} \operatorname{det} D f(y) d m(y)
$$

- conservative systems: if f has an invariant measure a.c. with respect to m
- dissipative systems: each f-invariant measure with full support has a part which is singular with respect to m

Example of conservative systems

Hamiltonian dynamics
(examples: billiards, geodesic flows, n-body problem...)
$M=\mathbb{R}^{2 n}=\left\{\left(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right)\right\}$, endowed with $\omega=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$
Let $H: U \rightarrow \mathbb{R}$ smooth, for an open set $U \subset M$, $\leadsto\left(X^{t}\right)_{t}$ flow induced by the vector field F such that $\omega(F, \cdot)=d H$

$$
\frac{\partial x_{j}}{\partial t}=\frac{\partial H}{\partial y_{j}}, \quad \frac{\partial y_{j}}{\partial t}=-\frac{\partial H}{\partial x_{j}}
$$

The flow $\left(X^{t}\right)_{t}$ preserves the levels $H^{-1}(c)$ and ω, hence the volume $m=\prod_{i=1}^{n} d x_{i} d y_{i}$ (Liouville measure)

Example of dissipative system

$f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ with North pole - South pole dynamics between two fixed points N, S, N repelling $\left(f^{\prime}(N)>1\right)$ and S attracting $\left(0<f^{\prime}(S)<1\right)$
$\sim f$ is dissipative (and δ_{S} is a physical measure)
Proof: let μ be an f-invariant measure with $\mu(\{S\})=0$, and let $I \subset \mathbb{S}^{1} \backslash\{S\}$ open neighborhood of N, with $\mu(I)>0$
$\cap_{k=1}^{+\infty} f^{-k}(I)=\{N\}$ but for all $n \geq 1$,

$$
\begin{aligned}
& \mu\left(\cap_{k=1}^{n} f^{-k}(I)\right)=\mu\left(f^{-n}(I)\right)=\mu(I) \\
& \Longrightarrow \mu(\{N\})=\mu\left(\cap_{k=1}^{+\infty} f^{-k}(I)\right)=\mu(I)>0
\end{aligned}
$$

Dominated splittings and cone-fields

Definition: an f-invariant set $\Lambda \subset M$ has a dominated splitting if
$T_{\Lambda} M=E_{1} \oplus \cdots \oplus E_{k}$, with

- $\operatorname{dim}\left(E_{i}(x)\right)$ independent of x, for $i \in\{1, \cdots, k\}$

- (invariance) $\forall x \in \Lambda, D f(x) E_{i}(x)=E_{i}(f(x))$, for $i \in\{1, \cdots, k\}$
- (domination) $\exists c>0, \lambda \in(0,1)$ such that $\forall x \in \Lambda, \forall i \in\{1, \cdots, k-1\}$,

$$
\left\|\left.D f^{n}(x)\right|_{E_{i}}\right\|<c \lambda^{n} m\left(\left.D f^{n}(x)\right|_{E_{i+1}}\right)
$$

Definition: a cone-field \mathscr{C} on an invariant set $\Lambda \subset M$ is a map $\Lambda \ni x \mapsto \mathscr{C}(x)$ where $\mathscr{C}(x)=\left\{v \in T_{x} M: Q_{x}(v) \geq 0\right\}$ is a cone, such that in local charts, the quadratic form $\left\{Q_{x}\right\}_{x \in \Lambda}$ defining them can be chosen continuously and have the same signature $\left(d_{+}, d_{-}\right)$
\leadsto a cone-field \mathscr{C} on Λ is contracted if there exists $N \geq 1$ s.t. for any $x \in \cap_{i=0}^{N} f^{-k}(\Lambda)$, we have $D f^{N}(x) \mathscr{C}(x) \subset \operatorname{int}\left(\mathscr{C}\left(f^{N}(x)\right)\right)$

Theorem: (cone-field criterion) let $f \in \operatorname{Diff}^{2}(M), \Lambda \subset M$ an invariant compact set, and fix $d_{+} \geq 1$; then Λ has a contracted cone-field \mathscr{C} of dimension d_{+}if and only if there exists a dominated splitting $T_{\Lambda} M=E_{-} \oplus E_{+}$with $\operatorname{dim}\left(E_{+}\right)=d_{+}$

Foliations, absolute continuity

Let M be a smooth manifold of dimension $n \geq 1$
Definition: for $1 \leq k \leq n$, a continuous k-dimensional foliation \mathscr{W} with C^{1} leaves of M is a partition of M into C^{1} submanifolds $\mathscr{W}(x) \ni x$ which locally depend continuously on x in the C^{1} topology

Let m be the Riemannian volume in M
For any submanifold $N \subset M$, let m_{N} be the induced Riemannian volume in N
Definition: let \mathscr{W} be a foliation, let (U, h) be a foliation coordinate chart, let $L=h\left(\{y\} \times B^{n-k}\right)$ be a C^{1} local transversal We say that \mathscr{W} is absolutely continuous if for any such L and U, \exists measurable family of positive measurable function
$f_{x}: \mathscr{W}(x) \cap U=: \mathscr{W}_{U}(x) \rightarrow \mathbb{R}$ (conditional densities) s.t. \forall meas. $A \subset U$,

$$
m(A)=\int_{L} \int_{\mathscr{W}_{U}(x)} \mathbf{1}_{A}(x, y) f_{x}(y) d m_{\mathscr{W}(x)}(y) d m_{L}(x)
$$

\leadsto in particular, conditional densities are automatically integrable

Hyperbolic Systems

- Let M be a smooth compact Riemannian manifold
- let $f: M \rightarrow M$ be a C^{k} (local) diffeomorphism, $k \geq 1$ ($k \geq 2$ in most of the following) or $\left(X^{t}: M \rightarrow M\right)_{t \in \mathbb{R}}$ (semi-)flow $C^{k}, k \geq 1$, with generator X

Definition: Λ compact f-invariant set is hyperbolic if it has a dominated splitting $\left.T M\right|_{\Lambda}=E^{s} \oplus E^{u}$, where stable/unstable bundle E^{s} / E^{u} are uniformly contracted/expanded, i.e., $\exists C>0,0<\lambda<1<\mu$ such that $\forall x \in \Lambda, n \geq 0$:

$$
\begin{array}{lrl}
\left\|D f^{n}(x) v^{s}\right\| \leq c \lambda^{n}\left\|v^{s}\right\|, & v^{s} \in E^{s}(x) \\
\left\|D f^{n}(x) v^{u}\right\| \geq c^{-1} \mu^{n}\left\|v^{u}\right\|, & & v^{u} \in E^{u}(x)
\end{array}
$$

$\left.\leadsto T M\right|_{\Lambda}=E^{s} \oplus \mathbb{R} X \oplus E^{u}$ in the case of a flow

- E^{s}, E^{u} integrate uniquely into f-invariant foliations \mathscr{W}^{s} (stable), \mathscr{W}^{u} (unstable), Hölder continuous, absolutely continuous (a.c.) when $k \geq 2$
- diffeomorphism/flow with $\Lambda=M$: Anosov system

Partially Hyperbolic Systems

- M compact Riemannian manifold
- $f: M \rightarrow M C^{k}$ diffeomorphism, $k \geq 1$

Definition: f is partially hyperbolic if there exists a dominated splitting $T M=E^{s} \oplus E^{c} \oplus E^{u}$ s.t. for $c>0, \lambda_{s}<\mu_{c} \leq \lambda_{c}<\mu_{u}$, with $\lambda_{s}<1<\mu_{u}$, we have $\forall x \in \Lambda, n \geq 0$:

$$
\begin{aligned}
\quad\left\|D f^{n}(x) v^{s}\right\| \leq c \lambda_{s}^{n}\left\|v^{s}\right\|, & v^{s} \in E^{s}(x) \\
c^{-1} \mu_{c}^{n}\left\|v^{c}\right\| \leq\left\|D f^{n}(x) v^{c}\right\| \leq c \lambda_{c}^{n}\left\|v^{c}\right\|, & v^{c} \in E^{c}(x) \\
c^{-1} \mu_{u}^{n}\left\|v^{u}\right\| \leq\left\|D f^{n}(x) v^{u}\right\|, & v^{u} \in E^{u}(x)
\end{aligned}
$$

- E^{s}, E^{u} integrate uniquely to f-invariant foliations \mathscr{W}^{s} (stable), \mathscr{W}^{u} (unstable), not necessarily E^{c} $\mathscr{W}^{s}, \mathscr{W}^{u}$ are Hölder continuous, absolutely continuous when $k \geq 2$

Some (partially) hyperbolic systems

- Anosov flows: geodesic flow on negatively curved surfaces

- Anosov diffeomorphisms: Arnold's cat map on \mathbb{T}^{2}

- hyperbolic set: Smale's horseshoe

- partially hyperbolic diffeomorphisms:
- time-one map X^{1} of an Anosov flow $\left(X^{t}\right)_{t}$
- $A \times$ Id, where A is hyperbolic

Basic sets, attractors

- a hyperbolic set Λ is called basic if it is transitive and locally maximal:

$$
\Lambda=\cap_{n \in \mathbb{Z}} f^{-n}(\mathscr{U}), \text { for a neighborhood } \mathscr{U} \text { of } \Lambda
$$

- Λ is an attractor if there exists a neighborhood \mathscr{U} of Λ such that

$$
f(\overline{\mathscr{U}}) \subset \mathscr{U} \text { and } \Lambda=\cap_{n \in \mathbb{N}} f^{n}(\mathscr{U})
$$

(Plykin attractor)

Basic properties:

- local product structure
$-\Lambda=\cup_{x \in \Lambda} \mathscr{W}^{u}(x)$
$-\mathscr{U} \subset \cup_{x \in \Lambda} \mathscr{W}^{s}(x)$

Basic properties of hyperbolic systems

- sensitivity to initial conditions («chaotic » systems)
- « good» understanding of statistical properties:
- ergodicity for C^{2} conservative systems
- existence of SRB measures for hyperbolic attractors
- structural stability (Anosov '67) :

If Λ is hyperbolic for $f \in \operatorname{Diff}^{1}(M)$, then there exists a neighborhood $\mathscr{U} \subset \operatorname{Diff}^{1}(M)$ of f and $h: U \rightarrow C^{0}(\Lambda, M)$ such that for all $g \in \mathscr{U}$,

$$
\begin{gathered}
\Lambda_{g}:=h_{g}(\Lambda) \text { is hyperbolic for } g \\
\left.h_{g} \circ f\right|_{\Lambda}=\left.g \circ h_{g}\right|_{\Lambda} \text { (topological conjugacy) }
\end{gathered}
$$

In the case of a hyperbolic flow $\left(X^{t}\right)_{t}$, if $\left(Y^{t}\right)_{t}$ is C^{1}-close to $\left(X^{t}\right)_{t}$, there exists an orbit equivalence

- density of periodic orbits for basic sets

Use of foliations in smooth ergodic theory

1. Statistical properties

- stable ergodicity for C^{2} conservative diffeomorphisms
- SRB measures: capture the statistical behavior of « many » orbits

2. Properties of invariant foliations $\mathscr{W}^{s / u}$

- absolute continuity/Hölder regularity of the foliations \mathscr{V}^{s} and \mathscr{V}^{u}
- transitivity of the pair $\left(\mathscr{W}^{s}, \mathscr{W}^{u}\right)$

Stable Manifold Theorem

Let $f \in \operatorname{Diff}^{r}(M), r \geq 1$
Let $\Lambda \subset M$ compact f-invariant set with a partially hyperbolic splitting $T_{\Lambda} M=E^{s} \oplus E^{c}, \operatorname{dim}\left(E^{s}\right) \geq 1, E^{s}$ uniformly contracted
Definition: given $\varepsilon>0$ small, for each $x \in \Lambda$, define the strong stable set:

$$
\mathscr{W}^{s}(x):=\left\{y \in M: \exists c>0 \text { s.t. } \forall n \geq 0, d\left(f^{n}(x), f^{n}(y)\right)<c e^{-\varepsilon n} \min \left\{m\left(\left.D f^{n}\right|_{E^{c}(x)}\right), 1\right\}\right\}
$$

Theorem: (Stable Manifold Theorem, Hirsch-Pugh-Shub)

- for any $x \in \Lambda$, the strong stable set $\mathscr{W}^{s}(x)$ is an injectively immersed C^{r}-submanifold diffeomorphic to $\mathbb{R}^{\operatorname{dim}\left(E^{s}\right)}$, tangent to $E^{s}(x)$ at x
- the strong stable set does not depend on ε as long as it is small enough
- for any $x, y \in \Lambda$, the strong stable sets $\mathscr{W}^{s}(x), \mathscr{W}^{s}(y)$ are either disjoint or coincide
- for $\eta>0$ small, the ball $\mathscr{V ^ { s }}(x, \eta)$ in $\mathscr{W}^{s}(x)$ of center x and radius η depends continuously on x and f for the C^{r}-topology

Proof of Stable Manifold Theorem: 1) Plaque families

Theorem: (Plaque Families, Hirsch-Pugh-Shub)
Let $f \in \operatorname{Diff}^{r}(M), r \geq 1$, let $\Lambda \subset M$ compact f-invariant set with a dominated splitting $T_{\Lambda} M=E \oplus F$. Then, for every $x \in \Lambda$, there exists a C^{1} embedding $l_{E}(x): E(x) \supset B(0,1) \rightarrow M$ such that:

- (tangency) for any $x \in \Lambda, t_{E}(x)(0)=x$, and $t_{E}(x)(B(0,1))$ is tangent to $E(x)$ at x
- (continuity) the embeddings $\left\{l_{E}(x)\right\}_{x}$ depend continuously on $x \in \Lambda$ in the C^{1}-topology
- (local invariance) there exists $\delta_{0} \in(0,1)$ such that for $x \in \Lambda$, it holds $f\left(l_{E}(x)\left(B\left(0, \delta_{0}\right)\right)\right) \subset l_{E}(f(x))(B(0,1))$
$\imath_{E}(x)(B(0,1))$

Proof:

a. Lift f to a C^{r} local diffeomorphism $f_{x}:=\exp _{f(x)}^{-1} \circ f \circ \exp _{x}$ from $B(0, \alpha / 2) \subset T_{x} M$ to a neighborhood of 0 in $T_{f(x)} M$ and glue it with $D f(x)$ on the complement of $B(0, \alpha)$ by a bump function to get a diffeomorphism $\hat{f}_{x}: T_{x} M \rightarrow T_{f(x)} M$

Lemma: for any $\varepsilon>0$, there exists $\alpha>0$ such that $d_{C^{1}}\left(\hat{f}_{x}, D f(x)\right)<\varepsilon$

1) Plaque families

b. Let \mathscr{C}_{F} be a cone-field along F that is contracted by f

Let \mathscr{C}_{E} be a cone-field along E that is contracted by f^{-1}
\leadsto on each tangent space $T_{x} M$, one obtains a constant cone field which coincides with $\mathscr{C}_{E}(x)$
$\leadsto \hat{f}_{x}^{-1}$ contracts $\mathscr{C}_{E}(f(x))$ into $\mathscr{C}_{E}(x)$
Let L_{x} be the family of Lipschitz graphs tangent to $\mathscr{C}_{E}(x)$ containing 0 , i.e., the graphs of Lipschitz functions $\psi: E(x) \rightarrow F(x)$ such that $\psi(0)=0$ and $(u, \psi(u))-(v, \psi(v)) \in \mathscr{C}_{E}(x), \forall u, v \in E(x)$
$\leadsto L_{x}$ is complete for the distance $d\left(\psi_{1}, \psi_{2}\right):=\max _{u \in E(x)} \frac{d\left(\psi_{1}(u), \psi_{2}(u)\right)}{\|u\|}$
(distance is bounded because graphs are uniformly Lipschitz)
Lemma: $\hat{f}_{x}^{-1}\left(L_{f(x)}\right) \subset L_{x}$ (projection on $E(x)$ is injective on the image of the graph)

1) Plaque families

c. Lemma: (contraction) for $n \in \mathbb{N}$ large enough, $\hat{F}_{x}^{n}:=\left(\hat{f}_{f^{n-1}(x)} \circ \cdots \circ \hat{f}_{x}\right)^{-1}: L_{f^{n}(x)} \rightarrow L_{x}$ is a contraction

Proof: let $\psi_{1}^{\prime}, \psi_{2}^{\prime}$ be the images by \hat{F}_{x}^{n} of $\psi_{1}, \psi_{2} \in L_{f^{n}(x)}$, and fix $u \in E(x)$
$\leadsto\left(u, \psi_{1}^{\prime}(u)\right)=\hat{F}_{x}^{n}\left(v, \psi_{1}(v)\right) \&\left(u, \psi_{2}^{\prime}(u)\right)=\hat{F}_{x}^{n}\left(w, \psi_{2}(w)\right)$, for $v, w \in E\left(f^{n}(x)\right)$
Let us assume that $v=w$ for simplicity, i.e., $\left(u, \psi_{i}^{\prime}(u)\right)=\hat{F}_{x}^{n}\left(v, \psi_{i}(v)\right), i=1,2$

- $(v, 0) \in \mathscr{C}_{E}\left(f^{n}(x)\right)$ and $(u, 0) \in \mathscr{C}_{E}(x)$, where $\mathscr{C}_{E}\left(f^{n}(x)\right)$ contracted by \hat{F}_{x}^{n}, and \hat{F}_{x}^{n} close to $\left(D f^{n}(x)\right)^{-1}$, hence

$$
\|v\| \leq\left\|\left.D f^{n}(x)\right|_{E}\right\| e^{\varepsilon n}\|u\|
$$

- $\left(0, \psi_{1}(v)-\psi_{2}(v)\right)=\left(v, \psi_{1}(v)\right)-\left(v, \psi_{2}(v)\right) \in \mathscr{C}_{F}\left(f^{n}(x)\right)$,
$\left(0, \psi_{1}^{\prime}(u)-\psi_{2}^{\prime}(u)\right)=\left(u, \psi_{1}^{\prime}(u)\right)-\left(u, \psi_{2}^{\prime}(u)\right) \in \mathscr{C}_{F}(x)$, where $\mathscr{C}_{F}(x)$ contracted by $\left(\hat{F}_{x}^{n}\right)^{-1}$, hence

$$
d\left(\psi_{1}(v), \psi_{2}(v)\right) \geq m\left(\left.D f^{n}(x)\right|_{F}\right) e^{-\varepsilon n} d\left(\psi_{1}^{\prime}(u), \psi_{2}^{\prime}(u)\right)
$$

thus

$$
\frac{d\left(\psi_{1}^{\prime}(u), \psi_{2}^{\prime}(u)\right)}{\|u\|} \leq e^{2 \varepsilon n} \frac{\left\|\left.D f^{n}(x)\right|_{E}\right\|}{m\left(\left.D f^{n}(x)\right|_{F}\right)} \frac{d\left(\psi_{1}(v), \psi_{2}(v)\right)}{\|v\|}
$$

$\leadsto d\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}\right) \leq c \lambda^{n} e^{2 \varepsilon n} d\left(\psi_{1}, \psi_{2}\right)$, by domination, hence uniform contraction for n large enough

1) Plaque families

d. Let $\mathscr{L}_{x}:=\prod_{k \in \mathbb{Z}} L_{f^{k}(x)}$, endowed with the distance given by supremum distance on each $L_{f^{k}(x)}$
\leadsto product map $\left(\hat{f}_{f^{k}(x)}^{-1}\right)_{k \in \mathbb{Z}}:\left(\psi_{f^{k}(x)}\right)_{k \in \mathbb{Z}} \mapsto\left(\hat{f}_{f^{k}(x)}^{-1}\left(\psi_{f^{k+1}(x)}\right)\right)_{k \in \mathbb{Z}}$ acts on \mathscr{L}_{x} and (after iteration) it is a contraction
\sim there exists a fixed point $\left(\psi_{f^{\prime}(x)}\right)_{k \in \mathbb{Z}}$
\leadsto let then define the embedding $l_{E}(x): E(x) \rightarrow M, u \mapsto \exp _{x}\left(u, \psi_{x}(u)\right)$
As $\left.\hat{f}_{x}\right|_{B(0, \alpha / 2)} \equiv f_{x}:=\left.\exp _{f(x)}^{-1} \circ f \circ \exp _{x}\right|_{B(0, \alpha / 2)}$ and \hat{f}_{x} sends ψ_{x} to $\psi_{f(x)}$, for $\delta_{0}>0$ small enough,
$f\left(l_{E}(x)\left(B\left(0, \delta_{0}\right)\right)\right)=\exp _{f(x)} \hat{f}_{x}\left(\left.\operatorname{graph}\left(\psi_{x}\right)\right|_{B\left(0, \delta_{0}\right)}\right) \subset \exp _{f(x)}\left(\left.\operatorname{graph}\left(\psi_{f(x)}\right)\right|_{B(0,1)}\right)$, i.e.,

$$
f\left(l_{E}(x)\left(B\left(0, \delta_{0}\right)\right)\right) \subset l_{E}(f(x))(B(0,1))
$$

1) Plaque families

e. By the cone-field criterion for the maps \hat{f}_{x}, at each $u \in T_{x} M$ there exists a splitting $\hat{E}(u) \oplus \hat{F}(u)$ s.t.
$\hat{E}(u):=\operatorname{vectors}\left(v_{k}\right)_{k \in \mathbb{Z}}$ tgt at u whose iterates under $\left(\hat{f}_{f^{k}(x)}\right)_{k \in \mathbb{Z}}$ remain in the cones $\left(\mathscr{C}_{E}\left(f^{k}(x)\right)\right)_{k \in \mathbb{Z}}$ $\hat{F}(u):=\operatorname{vectors}\left(v_{k}\right)_{k \in \mathbb{Z}}$ tgt at u whose iterates under $\left(\hat{f}_{f^{k}(x)}\right)_{k \in \mathbb{Z}}$ remain in the cones $\left(\mathscr{C}_{F}\left(f^{k}(x)\right)\right)_{k \in \mathbb{Z}}$

Since ψ_{x} is Lipschitz, it is differentiable at almost every $u \in T_{x} M$, hence has a tangent space whose iterates remain in the cones $\left(\mathscr{C}_{E}\left(f^{k}(x)\right)\right)_{k \in \mathbb{Z}}$
\Longrightarrow tangent space in $\hat{E}(u)$
\leadsto Since $\hat{E}(u)$ depends continuously on u, ψ_{x} is C^{1} and tangent to $\hat{E}(u)$ everywhere $\sim l_{E}(x)(B(0,1))$ is tangent to $E(x)$ at 0
f. By construction, ψ_{x} is close to $\hat{F}_{x}^{n}\left(\psi^{\prime}\right)$ for $\psi^{\prime} \in \mathscr{L}_{f^{n}(x)}$ arbitrary, where $\hat{F}_{x}^{n}:=\left(\hat{f}_{f^{n-1}(x)} \circ \cdots \circ \hat{f}_{x}\right)^{-1}$ Fixing n and considering $\psi^{\prime}:=\psi_{f^{-n}\left(x^{\prime}\right)}$ for x^{\prime} close to x, it implies that ψ_{x} and $\psi_{x^{\prime}}$ are close on $B(0,1)$

Proof of Stable Manifold Theorem: 2) Coherence argument

Corollary: let $f \in \operatorname{Diff}^{r}(M), r \geq 1$, let $\Lambda \subset M$ compact f-invariant set with a partially hyperbolic splitting $T_{\Lambda} M=E^{s} \oplus E^{c}$ Let $l_{E^{s}}(x)$ be the embedding of $E^{s}(x)$ given by the Plaque families Theorem. Fix $N \in \mathbb{N}$ large, $\varepsilon, \delta_{0}>0$ small, and let

$$
\mathscr{W}_{l o c}^{s}(x):=l_{E^{s}}(x)\left(B\left(0, \delta_{0}\right)\right)
$$

A. For any $x \in \Lambda, n \geq 0, \operatorname{diam}\left(f^{n}\left(\mathscr{W}_{l o c}^{s}(x)\right)\right) \leq e^{n \varepsilon} \prod_{k=0}^{[n / N]}\left\|\left.D f^{k N}(x)\right|_{E^{s}}\right\|$
B. For any $x \in \Lambda, n \geq N, f^{n}\left(\mathscr{V}_{\text {loc }}^{s}(x)\right) \subset \mathscr{V}_{\text {loc }}^{s}\left(f^{n}(x)\right)$
C. For any $x \in \Lambda$, $\mathscr{W}^{s}(x)=\cup_{k \geq 0} f^{-k}\left(\mathscr{W}_{\text {loc }}^{s}\left(f^{k}(x)\right)\right)$

Proof: for $\delta_{0}>0$ small enough, the disc $\mathscr{W}_{\text {loc }}^{s}(x)$ is almost linear, and the action of f^{n} is close to that of $\left.D f^{n}\right|_{E^{s}(x)}$
A. is proved inductively, checking by the local invariance that $f^{n}\left(\mathscr{W}_{\text {loc }}^{s}(x)\right) \subset l_{E^{s}}\left(f^{n}(x)\right)(B(0,1))$
B. follows from A.
C. by A. and the domination, we deduce that $\mathscr{W}^{s}(x) \supset \cup_{k \geq 0} f^{-k}\left(\mathscr{V}_{\text {loc }}^{s}\left(f^{k}(x)\right)\right)$. Let us show the other inclusion:

Proof of Stable Manifold Theorem: 2) Coherence argument

Coherence argument: let $z \in \mathscr{W}^{s}(x)$; up to iteration, assume that their forward iterates remain at distance $\ll \delta_{0}$
Let \mathscr{D} be a small disk containing z and $y \in \mathscr{W}_{\text {loc }}^{s}(x)$ and tangent to a contracted cone field $\mathscr{C}_{E^{c}}$
\leadsto forward iterates of \mathscr{D} remain tangent to $\mathscr{C}_{E^{c}}$
For $\varepsilon>0$ small, and $n \in \mathbb{N}$ large, let us estimate the distance between the points $f^{n}(x), f^{n}(y), f^{n}(z)$:

- $d\left(f^{n}(x), f^{n}(y)\right)<c_{1} e^{n \varepsilon}\left\|\left.D f^{n}\right|_{E^{s}(x)}\right\|$
- $d\left(f^{n}(x), f^{n}(z)\right)<c_{2} e^{-\varepsilon n} m\left(\left.D f^{n}\right|_{E^{c}(x)}\right)$
- $d\left(f^{n}(y), f^{n}(z)\right)>c_{3} e^{-\frac{\varepsilon}{2} n} m\left(\left.D f^{n}\right|_{E^{c}(x)}\right)$

By the domination, and the triangle inequality, we get a contradiction

Absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

Let M be a smooth manifold of dimension $n \geq 1$
Let \mathscr{W} be a foliation of M, let (U, h) be a foliation coordinate chart, and let $L_{i}=h\left(\left\{y_{i}\right\} \times B^{n-k}\right)$ be two C^{1} local transversals, $i=1,2$
Definition: the holonomy map $H=H_{L_{1}, L_{2}}: L_{1} \rightarrow L_{2}$ is the homeomorphism $h\left(y_{1}, z\right) \mapsto h\left(y_{2}, z\right)$, for $z \in B^{n-k}$

Definition: the foliation \mathscr{W} is transversely absolutely continuous if the holonomy map H is absolutely continuous for any foliation chart and any transversals L_{1}, L_{2}, i.e., there exists a positive measurable function $J: L_{1} \rightarrow \mathbb{R}$ (the Jacobian of H) such that for any measurable subset $A \subset L_{1}$,

$$
m_{L_{2}}(H(A))=\int_{L_{1}} \mathbf{1}_{A} J(z) d m_{L_{1}}(z)
$$

Transverse absolute continuity

Proposition: if a foliation \mathscr{W} is transversely absolutely continuous, then it is absolutely continuous
Proof: let (U, h) be a foliation coordinate chart on M, and let $L=h\left(\{y\} \times B^{n-k}\right)$ be a C^{1} local transversal Let \mathscr{G} be an $n-k$ dimensional C^{1}-foliation such that $L=\mathscr{G}_{U}(x):=\mathscr{G}(x) \cap U$ and $U=U_{y \in \mathscr{W}_{U}(x)} \mathscr{G}_{U}(y)$ $\sim \mathscr{G}$ is absolutely continuous and transversally absolutely continuous Denote by $\left\{g_{y}(\cdot)\right\}_{y}$ the densities for \mathscr{G} (continuous, hence measurable)

For any measurable set $A \subset U$, by Fubini,
$m(A)=\int_{\mathscr{V}_{U}(x)} \int_{\mathscr{G}_{U}(y)} \mathbf{1}_{A}(y, z) g_{y}(z) d m_{\mathscr{G}(y)}(z) d m_{\mathscr{W}(x)}(y)$
\qquad

Let H_{y} be the holonomy map along the leaves of \mathscr{V} from $\mathscr{G}_{U}(x)=L$ to $\mathscr{G}_{U}(y)$
Let $J_{y}(\cdot)$ be the Jacobian of H_{y}

$$
\leadsto \int_{\mathscr{G}_{U}(y)} \mathbf{1}_{A}(y, z) g_{y}(z) d m_{\mathscr{G}(y)}(z)=\int_{L} \mathbf{1}_{A}\left(H_{y}(s)\right) J_{y}(s) g_{y}\left(H_{y}(s)\right) d m_{L}(s)
$$

Transverse absolute continuity

Change order of integration in
$m(A)=\int_{\mathscr{W}_{U}(x)} \int_{\mathscr{G}_{U}(y)} \mathbf{1}_{A}(y, z) g_{y}(z) d m_{\mathscr{G}(y)}(z) d m_{\mathscr{W}(x)}(y)$
$\leadsto m(A)=\int_{L} \int_{\mathscr{W}_{U}(x)} \mathbf{1}_{A}\left(H_{y}(s)\right) J_{y}(s) g_{y}\left(H_{y}(s)\right) d m_{\mathscr{W}(x)}(y) d m_{L}(s)$

Let \bar{H}_{s} be the holonomy map along the leaves of \mathscr{G} from $\mathscr{W}_{U}(x)$ to $\mathscr{V}_{U}(s), s \in L$, and let $\bar{J}_{s}(\cdot)$ be the Jacobian of \bar{H}_{s} Using a change of variables $r=H_{y}(s), y=\bar{H}_{s}^{-1}(r)$, transform integral over $\mathscr{W}_{U}(x)$ into integral over $\mathscr{W}_{U}(s)$:

$$
\begin{gathered}
\int_{\mathscr{W}_{U}(x)} \mathbf{1}_{A}\left(H_{y}(s)\right) J_{y}(s) g_{y}\left(H_{y}(s)\right) d m_{\mathscr{W}(x)}(y)=\int_{\mathscr{W}_{U}(s)} \mathbf{1}_{A}(r) J_{y}(s) g_{y}(r) \bar{J}_{s}^{-1}(r) d m_{\mathscr{W}(s)}(r) \\
\sim m(A)=\int_{L} \int_{\mathscr{W}_{U}(s)} \mathbf{1}_{A}(r) J_{y}(s) g_{y}(r) \bar{J}_{s}^{-1}(r) d m_{\mathscr{W}(s)}(r) d m_{L}(s)
\end{gathered}
$$

Proof of absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

For subspaces $A, B \subset \mathbb{R}^{N}$, let $\Theta(A, B):=\min \{\|v-w\|: v \in A,\|v=1\|, w \in B,\|w\|=1\}$
Lemma: let \hat{E} be a smooth k-dimensional distribution on a compact subset of \mathbb{R}^{N} $\forall \xi>0, \varepsilon>0$, there exists $\delta>0$ s.t. if $Q_{1}, Q_{2} \subset \mathbb{R}^{N}$ are two $N-k$-dim. C^{1} submanifolds with a smooth holonomy map $\hat{H}: Q_{1} \rightarrow Q_{2}$ along \hat{E} s.t. for all $x \in Q_{1}$,

$$
\begin{array}{lr}
\Theta\left(T_{x} Q_{1}, \hat{E}(x)\right) \geq \xi, \quad \Theta\left(T_{\hat{H}(x)} Q_{2}, \hat{E}(x)\right) \geq \xi, \\
\operatorname{dist}\left(T_{x} Q_{1}, T_{\hat{H}(x)} Q_{2}\right) \leq \delta, & \|\hat{H}(x)-x\| \leq \delta,
\end{array}
$$

then the Jacobian of \hat{H} is smaller than $1+\varepsilon$
Proof: only the first derivatives of Q_{1}, Q_{2} affect the Jacobian of \hat{H}
\leadsto it is equal to the Jacobian of the holonomy map $\bar{H}: T_{x} Q_{1} \rightarrow T_{\hat{H}(x)} Q_{2}$ along \hat{E}
(A, B are θ-transverse if $\Theta(A, B) \geq \theta>0$)

After linear change of coordinates (depending only on ξ), we may assume that in the new coordinates $(u, v) \in \mathbb{R}^{N}$,

$$
x=(0,0), \quad T_{(0,0)} Q_{1}=\{v=0\}, \quad \hat{H}(x)=\left(0, v_{0}\right),\left\|v_{0}\right\|=\|\hat{H}(x)-x\|, \quad T_{\left(0, v_{0}\right)} Q_{2}=\left\{v=v_{0}+B u\right\}
$$

for some $k \times(N-k)$ matrix B whose norm depends only on δ,

$$
\hat{E}(0,0)=\{u=0\}, \quad \hat{E}(w, 0)=\{u=w+A(w) v\}
$$

for some $(N-k) \times k$ matrix $A(w)$ which is C^{1} in $w, A(0)=0$

Proof of absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

$$
\begin{gathered}
x=(0,0), \quad T_{(0,0)} Q_{1}=\{v=0\}, \quad \hat{H}(x)=\left(0, v_{0}\right),\left\|v_{0}\right\|=\|\hat{H}(x)-x\|, \quad T_{\left(0, v_{0}\right)} Q_{2}=\left\{v=v_{0}+B u\right\} \\
\hat{E}(0,0)=\{u=0\}, \quad \hat{E}(w, 0)=\{u=w+A(w) v\}
\end{gathered}
$$

\sim Image of $(w, 0)$ under \hat{H} is $\{u=w+A(w) v\} \cap\left\{v=v_{0}+B u\right\}$
Norm of B bounded from above in terms of $\xi \leadsto$ enough to estimate $\frac{\partial u}{\partial w}$ at $w=0$

$$
\begin{gathered}
u=w+A(w) v_{0}+A(w) B u \\
\frac{\partial u}{\partial w}=I+\frac{\partial A(w)}{\partial w} v_{0}+\frac{\partial A(w)}{\partial w} B u+A(w) B \frac{\partial u}{\partial w}
\end{gathered}
$$

and then for $w=0$, (recall $u(0)=0, A(0)=0)$

$$
\left.\frac{\partial u}{\partial w}\right|_{w=0}=I+\left.\frac{\partial A(w)}{\partial w}\right|_{w=0} v_{0}
$$

Proof of absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

Theorem: the stable and unstable foliations $\mathscr{W}^{s}, \mathscr{W}^{u}$ of a C^{2} Anosov diffeomorphism are transversely absolutely continuous
Proof: let $f: M \rightarrow M$ be a C^{2} Anosov diffeomorphism with stable and unstable distributions $E^{s}, E^{u}, c>0,0<\lambda<1<\mu$ s.t. $\forall x \in \Lambda, n \geq 0$:

$$
\begin{array}{lrl}
\left\|D f^{n}(x) v^{s}\right\| \leq c \lambda^{n}\left\|v^{s}\right\|, & v^{s} \in E^{s}(x) \\
\left\|D f^{n}(x) v^{u}\right\| \geq c^{-1} \mu^{n}\left\|v^{u}\right\|, & v^{u} \in E^{u}(x)
\end{array}
$$

We will focus on $\mathscr{W}^{s} \leadsto$ idea: uniformly approximate holonomy maps by continuous maps with uniformly bounded Jacobians \leadsto let \hat{E}^{s} be a smooth distribution that approximate the continuous distribution E^{s}

We assume that $M \subset \mathbb{R}^{N}$. By compactness, for some $\theta_{0}>0, \Theta\left(E^{s}(x), E^{u}(x)\right) \geq \theta_{0}$, for all $x \in M$, and there exist foliation charts $\left(U_{i}, h_{i}\right)_{i=1}^{l}$ of $\mathscr{W}^{s} \leadsto \exists \epsilon, \delta>0$ s.t. $\forall y \in U_{j}, \forall L \subset U_{j}$ compact submanifold of U_{j} s.t.

- L intersects transversely each local stable leaf of U_{j}
- $\Theta\left(T_{z} L, E^{s}\right)>\frac{\theta_{0}}{3}$, for all $z \in L$
- $\operatorname{dist}(y, L)<\delta$
then for any subspace $E \subset \mathbb{R}^{N}$ with $\operatorname{dist}\left(E, E^{s}(y)\right)<\epsilon, y+E \pitchfork L=\{\pi(y)\}$, with $\|y-\pi(y)\|<\frac{6 \delta}{\theta_{0}}$

Proof of absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

Let (U, h) be a foliation coordinate chart, L_{1}, L_{2} local transversals in U with holonomy map $H: L_{1} \rightarrow L_{2}$ (along the leaves of $\left.\mathscr{V}^{s}\right)$, let $\hat{H}: f^{n}\left(L_{1}\right) \rightarrow f^{n}\left(L_{2}\right)$ and $H_{n}: L_{1} \rightarrow L_{2}$ be the maps given by

$$
\hat{H}: f^{n}(x) \mapsto\left(f^{n}(x)+\hat{E}^{s}\left(f^{n}(x)\right)\right) \pitchfork f^{n}\left(L_{2}\right), \quad H_{n}: x \mapsto f^{-n}\left(\hat{H}\left(f^{n}(x)\right)\right)
$$

For $x_{1} \in L_{1}, x_{2}=H_{n}\left(x_{1}\right), y_{i}=f^{n}\left(x_{i}\right), i=1,2$; it holds $d\left(f^{k}\left(x_{1}\right), f^{k}\left(x_{2}\right)\right) \leq c \lambda^{k} d\left(x_{1}, x_{2}\right), \forall k \geq 0$
If \hat{E}^{s} is close enough to E^{s}, it is uniformly transverse to $f^{n}\left(L_{1}\right), f^{n}\left(L_{2}\right)$, hence $d\left(\hat{H}\left(f^{n}\left(x_{1}\right)\right), f^{n}\left(H\left(x_{1}\right)\right)\right) \leq c_{1} d\left(f^{n}\left(x_{1}, f^{n}\left(H\left(x_{1}\right)\right)\right) \leq c_{1} c \lambda^{n} d\left(x_{1}, H\left(x_{1}\right)\right)\right.$
The angle $\angle\left(x_{2}-x_{1}, H\left(x_{1}\right)-x_{1}\right) \lesssim\left(\frac{\lambda}{\mu}\right)^{n}$, hence

$$
d\left(H_{n}\left(x_{1}\right), H\left(x_{1}\right)\right) \leq c_{2}\left(\frac{\lambda}{\mu}\right)^{n} d\left(x_{1}, H\left(x_{1}\right)\right) \text {, i.e. } H_{n} \text { converges uniformly to } H \text { as } n \rightarrow+\infty
$$

Proof of absolute continuity of $\mathscr{W}^{s}, \mathscr{W}^{u}$

Lemma: the Jacobians of H_{n} are uniformly bounded
Proof: by previous estimates, $d\left(f^{k}\left(x_{1}\right), f^{k}\left(x_{2}\right)\right) \leq c_{3} \lambda^{k}$, for $k \geq 0$
Let $J\left(f^{k}\left(x_{i}\right)\right)$ be the Jacobian of f in the direction of $T_{f^{k}\left(x_{i}\right)} f^{k}\left(L_{i}\right)$, for $i=1,2, k \geq 0$
Let J_{n} be the Jacobian of H_{n},
Let \hat{J} the Jacobian of \hat{H} (it is uniformly bounded by the previous lemma)

$$
\leadsto J_{n}\left(x_{1}\right)=\prod_{k=0}^{n-1}\left(J\left(f^{k}\left(x_{2}\right)\right)\right)^{-1} \hat{J}\left(f^{n}\left(x_{1}\right)\right) \prod_{k=0}^{n-1} J\left(f^{k}\left(x_{1}\right)\right)
$$

\leadsto it remains to bound $\prod_{k=0}^{n-1} \frac{J\left(f^{k}\left(x_{1}\right)\right)}{J\left(f^{k}\left(x_{2}\right)\right)}$ from above:
follows from $\operatorname{dist}\left(T_{f^{k}\left(x_{1}\right)} f^{k}\left(L_{1}\right), T_{f^{k}\left(x_{2}\right)} f^{k}\left(L_{2}\right)\right) \leq c_{4} \lambda^{\alpha k}$, and Lipschitz continuity of J
End of the proof of a.c.: by the previous lemma, $\exists J>0$ s.t. for any measurable set $A \subset L_{1}, m_{L_{2}}\left(H_{n}(A)\right) \leq J m_{L_{1}}(A)$ Enough to work with balls: let $B(x, r) \subset L_{1}$ be a ball in L_{1}; for $\delta>0$ small, $n \geq 0$ large, $H(B(x, r-\delta)) \subset H_{n}(B(x, r))$,

$$
\begin{gathered}
\Longrightarrow m_{L_{2}}(H(B(x, r-\delta))) \leq m_{L_{2}}\left(H_{n}(B(x, r))\right) \leq \operatorname{Jm}_{L_{1}}(B(x, r)) \\
\Longrightarrow m_{L_{2}}(H(B(x, r)))=\lim _{\delta \rightarrow 0} m_{L_{2}}(H(B(x, r-\delta))) \leq \operatorname{Jm}_{L_{1}}(B(x, r))
\end{gathered}
$$

Ergodicity of conservative Anosov diffeomorphisms

Theorem: (Anosov, Sinai '67) if $f: M \rightarrow M$ is a C^{2} conservative Anosov diffeomorphism ($f_{*} m=m$, m volume) on a compact connected Riemannian manifold M, then f is ergodic

Proof: (Hopf argument) $\forall \varphi \in L^{2}(M, \mathbb{R})$, let

$$
\bar{\varphi}_{f}:=\limsup _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^{k}
$$

Birkhoff's Theorem $\Longrightarrow \bar{\varphi}_{f}=\pi_{f}(\varphi)$, where π_{f} is the projection

$$
\pi_{f}: L^{2}(M, \mathbb{R}) \rightarrow L_{f}^{2}(M, \mathbb{R}):=\left\{\psi \in L^{2}(M, \mathbb{R}): \psi \circ f=\psi\right\}
$$

Claim: to show that f is ergodic, enough to show that $\forall \varphi \in C^{0}(M, \mathbb{R}), \bar{\varphi}_{f}=\operatorname{cst}$ a.e. $\left(=\int_{M} \varphi d m\right)$
Proof: since π_{f} is continuous, and $C^{0}(M, \mathbb{R})$ is dense in $L^{2}(M, \mathbb{R})$, we thus have
$\pi_{f}\left(L^{2}(M, \mathbb{R})\right)=L_{f}^{2}(M, \mathbb{R})=\{\operatorname{cst} \mathrm{fcts}\}$

Ergodicity of conservative Anosov diffeomorphisms

1. Local ergodicity: fix $\varphi \in C^{0}(M, \mathbb{R})$; then $\bar{\varphi}_{f}$ is locally constant

Key remarks:
i. $\bar{\varphi}_{f}$ is constant along the leaves of $\mathscr{W}^{s}\left(\leftarrow \lim _{k \rightarrow+\infty} d\left(f^{k}(x), f^{k}(y)\right)=0\right.$ if $y \in \mathscr{W}^{s}(x)+$ Cesàro $)$
ii. $\bar{\varphi}_{f}=\bar{\varphi}_{f^{-1}}$ a.e. $\left(f\right.$-invariance $\Leftrightarrow f^{-1}$-invariance $)$
iii. $\bar{\varphi}_{f^{-1}}$ is constant along the leaves of \mathscr{V}^{u}
$\leadsto \operatorname{let} A:=\left\{\bar{\varphi}_{f}=\bar{\varphi}_{f^{-1}}\right\} \subset M\left(\sim m\left(A^{c}\right)=0\right)$
\leadsto let $\delta>0$ be small s.t. $U=U_{x}(\delta):=\cup_{y \in \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)$ is the homeomorphic image of $[-\delta, \delta]^{\operatorname{dim}\left(E^{u}\right)} \times[-\delta, \delta]^{\operatorname{dim}\left(E^{s}\right)}$ (local product structure)

Absolute continuity of $\mathscr{W}^{u} \Longrightarrow$ for a.e. $x \in M, m_{\mathscr{W}^{u}(x, \delta)}\left(A^{c} \cap \mathscr{W}^{u}(x, \delta)\right)=0$
Transverse absolute continuity of $\mathscr{W}^{s} \Longrightarrow m\left(\cup_{y \in A^{c} \cap \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)\right)=0$, i.e., $m\left(\cup_{y \in A \cap \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)\right)=m(U)$ (see below for more details)

Ergodicity of conservative Anosov diffeomorphisms

Indeed, consider an absolutely continuous foliation \mathscr{F} on U transverse to \mathscr{W}^{s} (e.g. \mathscr{W}^{u} or a smooth non-dynamical foliation) with $\mathscr{F}(x)=\mathscr{W}^{u}(x, \delta)$, and for $y \in U$, consider the holonomy map $H_{y}: \mathscr{W}^{s}(x, \delta) \rightarrow \mathscr{F}(y)$ along the leaves of \mathscr{V}^{s}
\leadsto for m-a.e. $y \in U, m_{\mathscr{F}(y)}\left(\cup_{y \in A^{c} \cap \mathscr{V} u(x, \delta)} \mathscr{W}^{s}(y, \delta)\right)=m_{\mathscr{F}(y)}\left(H_{y}\left(A^{c} \cap \mathscr{W}^{u}(x, \delta)\right)\right)=0$, and then
$m\left(\cup_{y \in A^{c} \cap \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)\right)=0$, by absolute continuity of \mathscr{F}

Let now $z \in \cup_{y \in A \cap \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)$, i.e., $z \in \mathscr{W}^{s}(y, \delta), y \in A \cap \mathscr{W}^{u}(x, \delta)$:

$\leadsto \bar{\varphi}_{f}(z) \stackrel{\text { i. }}{=} \bar{\varphi}_{f}(y) \stackrel{y \in A}{=} \bar{\varphi}_{f^{-1}}(y) \stackrel{\text { iii. }}{=} \bar{\varphi}_{f^{-1}}(x)$, i.e., $\bar{\varphi}_{f}$ cst m-a.e. on U (local ergodicity)
2. Global ergodicity: we have seen that for any $x \in M$, there exists a neighborhood $U_{x} \subset M$ of x where $\bar{\varphi}_{f}$ is m-a.e. constant By connectedness, we conclude that $\bar{\varphi}_{f}$ is constant m-a.e.

Sinai-Ruelle-Bowen (SRB) measures

What about the dissipative case? Still a way to describe the statistics of a « large » (for Lebesgue) set of orbits
Definition: (SRB measure) let μ be an f-invariant Borel probability measure. We say it is SRB if for every measurable partition ξ subordinate to \mathscr{V}^{u}, the conditional measures $\left\{\mu_{x}^{\xi}\right\}_{x}$ are a.c. wrt $m_{\mathscr{W}^{u}(x)}$ for μ-a.e. $x \in M$

Proposition: any ergodic SRB measure μ is physical (Birkhoff + a.c. of $\mathscr{W}^{s}, \mathscr{W}^{u}$)

Proof: fix a measurable partition ξ subordinate to \mathscr{W}^{u}, with conditional measures $\left\{\mu_{x}^{\xi}\right\}_{x}$ μ ergodic $\sim \mu(\mathscr{B}(\mu))=1$ (by Birkhoff), hence for μ-a.e. $x, \mu_{x}^{\xi}(\mathscr{B}(\mu))=1$ as μ is SRB, for such x we have $m_{\mathscr{W}^{u}(x, \delta)}(\mathscr{B}(\mu))=m_{\mathscr{W}^{u}(x, \delta)}\left(\mathscr{W}^{u}(x, \delta)\right) \quad(\star)$ Let $U:=\cup_{y \in \mathscr{W}^{u}(x, \delta)} \mathscr{W}^{s}(y, \delta)$; note that for any $z \in \mathscr{W}^{s}(y, \delta), y \in \mathscr{W}^{u}(x, \delta) \cap \mathscr{B}(\mu)$, we have $z \in \mathscr{B}(\mu)$; by transverse absolute continuity of \mathscr{V}^{s} and (\star) we conclude that (as in proof of local ergodicity for conservative Anosov diffeos.) m-a.e. $z \in U$ is in $\mathscr{B}(\mu)$

Theorem (Sinai-Ruelle-Bowen): let $\Lambda \subset U$ be a transitive attractor of a C^{2} diffeomorphism f; then there exists a unique f-invariant Borel probability measure μ on Λ such that for any $f \in C^{0}(U, \mathbb{R})$, for m-a.e. $x \in U$, it holds

$$
\lim _{k \rightarrow+\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k}(x)\right)=\int_{U} \varphi d \mu
$$

An equivalent characterization of μ is that it is SRB. Moreover, (f, μ) is ergodic

Proof of Sinai-Ruelle-Bowen result

a. Construction of $\mu+$ SRB property

Let $\Sigma:=\mathscr{W}^{s}(x, \delta)$ be a stable disk, $\delta>0$ small,
let $U=U(\Sigma, \delta):=\cup_{y \in \Lambda \cap \Sigma} \mathscr{W}^{u}(s, \delta)$ (topological product for δ small enough) \sim canonical neighborhood We write $U=\cup_{\alpha} \mathscr{D}_{\alpha}$ the partition of U into local unstable disks

Fix $x_{0} \in \Lambda$, let $L:=\mathscr{W}_{\text {loc }}^{u}\left(x_{0}\right)$, and let $\mu_{0}:=\frac{m_{L}}{m_{L}(L)}$
For $k \geq 0$, let μ_{k} be the measure $\left(f^{k}\right) * \mu_{0}$ living on $f^{k}(L)$
For any canonical neighborhood U, let U_{k} be the union of \mathscr{D}_{α} 's in U completely contained in $f^{k}(L)$ Let $\hat{\mu}_{k}=\hat{\mu}_{k, U}:=\mathbf{1}_{U_{k}} \mu_{k}$; then $\mu_{k}(U)-\hat{\mu}_{k}(U) \rightarrow 0$ as $k \rightarrow+\infty$
(indeed, if $f^{k}(x) \in \mathscr{D}_{\alpha}$, with $x \in L$ not too close to ∂L, then $\mathscr{D}_{\alpha} \subset f^{k}(L)$)
Let μ be an accumulation point of the averages $\left(\frac{1}{n} \sum_{k=0}^{n-1} \mu_{k}\right)_{n} \leadsto \mu$ is f-invariant
Moreover, for any canonical neighborhood $U,\left(\frac{1}{n} \sum_{k=0}^{n-1} \hat{\mu}_{k, U}\right)_{n}$ also converges to μ
$\left.f\right|_{\mathscr{W} u}$ is uniformly expanding, and has uniformly bounded C^{2} derivatives
\leadsto by a distortion argument, $\exists \alpha, \beta>0$ s.t. $\forall k \geq 0, \forall \mathscr{D}_{\alpha} \subset U_{k}$,

$$
\alpha \leq \frac{d \hat{\mu}_{k, U}}{d m_{\mathscr{D}_{\alpha}}} \leq \beta
$$

This bound also works for $\left(\frac{1}{n} \sum_{k=0}^{n-1} \hat{\mu}_{k, U}\right)_{n}$, thus for the accumulation point $\mu \leadsto \mu$ is SRB \rrbracket

Proof of Sinai-Ruelle-Bowen result

Definition: given $\nu \in \mathscr{M}_{f}$, we say that a point $x \in M$ is future generic wrt ν if it is in the basin $\mathscr{B}(\nu)$, i.e.

$$
\forall \varphi \in C^{0}(M, \mathbb{R}), \quad \lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(f^{k}(x)\right)=\int_{M} \varphi d \nu
$$

we say it is past generic if it is future generic for f^{-1}, generic if it is future + past generic
Proposition: (ergodic decomposition of invariant measures) let \mathscr{E}_{f} be the set of ergodic f-invariant Borel probability measures of f Then for any f-invariant Borel probability $\nu \in \mathscr{M}_{f}$, there is a Borel probability measure τ_{ν} on \mathscr{C}_{f} such that $\nu=\int_{\mathscr{C}_{f}} \nu^{\prime} d \tau_{\nu}\left(\nu^{\prime}\right)$
$\leadsto \nu$-a.e. $x \in M$ is generic wrt some ergodic measure $\nu_{(x)} \in \mathscr{E}_{f}$ (by Birkhoff); denote this set by $\mathrm{G}(\nu)$
b. Local ergodicity of (f, μ) : (genericity wrt same measure locally)

For any density point x of $\mu, \exists V$ neighborhood of $x, \nu=\nu(x) \in \mathscr{E}_{f}$ s.t.
i. μ-a.e. $z \in V$ is future generic wrt to ν
ii. m-a.e. $z \in V$ is future generic wrt ν

Proof of Sinai-Ruelle-Bowen result

Proof: let $U=\cup_{\alpha} \mathscr{D}_{\alpha}$ be a canonical neighborhood centered at x
Disintegrate μ wrt to $\left\{\mu_{\mathscr{D}_{\alpha}}^{u}\right\}_{\alpha}$ wrt disks in U, and let \mathscr{W}_{0} be one of these disks s.t.

- $x \in V:=\cup_{y \in \mathscr{W}_{0}} \mathscr{W}^{s}(y, \delta)$
- $m_{\mathscr{W}_{0}}$-a.e. $y \in \mathscr{W}_{0}$ is generic wrt to some $\mu_{(y)}$
(follows from SRB property and the previous fact that $\mu(\mathrm{G}(\mu))=1$, i.e., μ-a.e. $y \in M$ is generic wrt to some $\left.\mu_{(y)}\right)$

But $\forall y, y^{\prime} \in \mathscr{W}_{0} \cap \mathrm{G}(\mu), \lim _{n \rightarrow+\infty} d\left(f^{-k}(y), f^{-k}\left(y^{\prime}\right)\right)=0 \Longrightarrow$ past generic wrt same measure, i.e., $\mu_{(y)}=\mu_{\left(y^{\prime}\right)}=: \nu$
Similarly, any $z \in V(\nu):=\cup_{y \in \mathscr{W}}^{0} \cap \mathrm{G}(\mu) \mathscr{W}^{s}(y, \delta)$ is future generic wrt ν
Moreover, as $m_{\mathscr{W}_{0}}\left(\mathscr{W}_{0} \cap \mathrm{G}(\mu)\right)=1$ and \mathscr{W}^{s} transversally a.c. $\Longrightarrow \forall \mathscr{D}_{\alpha} \subset U, m_{\mathscr{D}_{\alpha}}\left(\mathscr{D}_{\alpha} \cap V(\nu)\right)=1$

+ SRB property \Longrightarrow for μ-a.e. $\mathscr{D}_{\alpha}, \mu_{\mathscr{D}_{\alpha}}^{u}\left(\mathscr{D}_{\alpha} \cap V(\nu)\right)=1$, hence $\mu(V(\nu))=\mu(V)$, and $m(V(\nu))=m(V)$ ■
c. Global ergodicity: local ergodicity + topological transitivity of the attractor

Indeed, any density point x has a neighborhood V_{x} where μ-a.e. point is future generic wrt some $\nu(x)$
For any x, x^{\prime}, there exists $n \geq 0$ s.t. $V_{x} \cap f^{-n}\left(V_{x^{\prime}}\right) \neq \varnothing$ open set where a.e. point is future generic to both $\nu(x), \nu\left(x^{\prime}\right) \leadsto \nu(x)=\nu\left(x^{\prime}\right)=: \nu$ Density points have full measure: μ-a.e. point is generic wrt ν, i.e., (f, μ) ergodic
d. The measure μ is physical: follows from previous result for ergodic SRB \square

