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Abstract. In this paper we study the problem of knowing when the central-

izer of a vector field is “small”. We obtain several criteria that imply different
types of “small” centralizers, namely collinear, quasi-trivial and trivial. There

are two types of results in the paper: general dynamical criteria that imply one

of the “small” centralizers above; and genericity results about the centralizer.
Some of our general criteria imply that the centralizer is trivial in the fol-

lowing settings: non-uniformly hyperbolic conservative C2 flows; transitive

separating C1 flows; Kinematic expansive C3 flows on 3 manifolds whose sin-
gularities are all hyperbolic.

For genericity results, we obtain that C1-generically the centralizer is quasi-

trivial, and in many situations we can show that it is actually trivial.
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1. Introduction

Given a dynamical system, it is natural to try to understand the symmetries
that it may have. Oftentimes, they may give extra information which can be used
to understand the dynamical behaviour. For example, towards the end of the 19th
century, Lie was able to use the symmetries of some differential equations to derive
their solutions, ans it was actually during this work that he introduced the notion
of Lie groups. There are several different notions of symmetries that one may
consider for a dynamical system. One of them is the so-called centralizer, which is
the main object of interest in this paper. Let us give a brief account of the study
of centralizers in dynamics.

Centralizers of diffeomorphisms. Let M be a compact riemannian manifold
and for each r ≥ 1 we consider Diffr(M) to be the set of Cr-diffeomorphisms of M .
For a given f ∈ Diffr(M) and s ∈ [1, r] we define its Cs-centralizer as

Cs(f) := {g ∈ Diffs(M) : f ◦ g = g ◦ f}.

In other words, it is the set of diffeomorphisms that commutes with f . Observe
that some trivial solutions of the equation f ◦ g = g ◦ f are given by g = fn, for
any n ∈ Z. A natural question is to know when these are the only solutions of such
equation. Whenever the centralizer is generated by f , we say that f has trivial
centralizer. We remark that, whenever the centralizer of f is non-trivial, then f
embeds into a non-trivial Z2-action.

Kopell in her Ph.D. thesis in 1970 proved that for r ≥ 2 and when M is the circle
S1, there is an open and dense subset of Cr-diffeomorphisms with trivial centralizer
(see [Kop70]). Motivated by Kopell’s result, Smale asked the following question:

Question 1 ([Sma91], [Sma98]). Is the set of Cr-diffeomorphisms with trivial cen-
tralizer a residual (or generic) subset? That is, does it contain a dense Gδ-subset
of the space of Cr-diffeomorphisms? Is it open and dense?

This question remains open in this generality, but there are several partial an-
swers. We refer the reader to [BF14, Bu04, Fi08, Fi09, PY89(1), PY89(2), Pl98,
Ro08, Ro93, RV18] for some related results in the hyperbolic and partially hyper-
bolic setting.

Bonatti-Crovisier-Wilkinson gave a positive answer to Smale’s question for
the C1-topology. They proved that a C1-generic diffeomorphism has trivial C1-
centralizer (see [BCW09]). From their result, a natural question is to know if for
the C1-topology the property of having trivial C1-centralizer is open and dense.
It turns out that the answer is no. This is given by Bonatti-Crovisier-Vago-
Wilkinson ([BCVW08]), where they proved that any manifold admits a C1-open
set U ⊂ Diff1(M) such that there exists a subset D ⊂ U , which is C1-dense in U ,
with the property that any diffeomorphism f ∈ D has non-trivial centralizer.

A great portion of this paper is dedicated to extend the result of Bonatti-
Crovisier-Wilkinson in [BCW09] for flows. As we will see, there are some diffi-
culties that arises when one studies the centralizer of flows, which do not appear
for diffeomorphisms.

Centralizers of flows. Let us now turn our attention to the symmetries of a
continuous dynamical system. Since we will restrict our study to the C1-category,
we can represent a flow by the vector field that generates it. Let Xr(M) be the
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set of Cr vector fields of M . Recall that a smooth manifold carries a Lie bracket
operator [·, ·] that acts on Xr(M) × Xr(M). For X,Y ∈ Xr(M), it is defined by
[X,Y ] := XY − Y X. If [X,Y ] = 0, we say that X and Y commute.

Let X ∈ Xr(M) and 1 ≤ s ≤ r, we define the Cs-centralizer of X by

Cs(X) := {Y ∈ Xs(M) : [X,Y ] = 0}.
This is the set of vector fields that commute with X.

Given X, the equation [X,Y ] = 0 has some trivial solutions. Indeed, for any
c ∈ R, the vector field Y = cX commutes with X. More generally, for any function
f : M → R such that Xf = 0, then the vector field Y = fX also commutes with
X. In what follows we will define different types of “triviality” for the centralizer
of flows.

A Cr vector field X has Cs-collinear centralizer if for any Y ∈ Cs(X), for any
point x ∈ M the space generated by the vectors X(x) and Y (x) has dimension at
most 1. This definition says that if Y commutes with X, then Y has the “same
direction” of X.

Recall that two vector fields commute if and only if their flows commute, that
is, for any tX , tY ∈ R we have that XtX ◦ YtY (.) = YtY ◦XtX (.). Two commuting
flows induce an R2-action. If X has collinear centralizer, then the flow generated
by X does not embed into a non-trivial R2-action, that is, there are no orbits of
the action with dimension 2.

A slightly stronger notion of triviality is the following: we say that X has Cs-
quasi-trivial centralizer if for any Y ∈ Cs(X) there is a continuous function f : M →
R, which is differentiable along X-orbits, such that Y = fX.

At last, we say that X has Cs-trivial centralizer if the centralizer is given by
the set {cX : c ∈ R}. Observe that this is the smallest possible centralizer that a
vector field may have. It is natural to ask in this context the following version of
Smale’s questions for the vector field centralizer.

Question 2. Is the set of Cr-vector fields with trivial (quasi-trivial or collinear)
centralizer a residual (or generic) subset? Is it open and dense?

There are several works that study the different types of triviality of the vector
field centralizer. In 1973, Kato-Morimoto proved that the centralizer of an Anosov
flow is quasi-trivial (see [KM73]). The main feature used in their proof is a topolog-
ical property called (Bowen-Walters) expansivity. We remark that there are several
different notions of expansivity for flows.

A few years later in [Oka76], Oka extended Kato-Morimoto’s result for (Bowen-
Walters) expansive flows. This type of expansivity is somehow restrictive, since it
implies that every singularity is an isolated point of the manifold.

In [Sad79], Sad in his Ph.D. thesis adapted the remarkable work of Palis-Yoccoz
[PY89(2)] for flows. He proved that the triviality of the vector field centralizer holds
for an C∞-open and dense subset of C∞ Axiom A vector fields that verify the strong
transversality condition. The singularities of an Axiom A flow are dynamically
isolated, meaning that they are not contained in a non-trivial transitive set. For
these type of flows the singularities do not give any trouble in the proofs of triviality
of the centralizer.

Much more recently, in 2018, Bonomo-Rocha-Varandas ([BRV18]) studied the
centralizer for Komuro expansive flows. We remark that Komuro expansivity allows
the presence of singularities, which includes for instance Lorenz attractors. They
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prove the triviality of the centralizer of transitive C∞-Komuro expansive transitive
flows whose singularities are hyperbolic and verify a non-resonance condition.

Bonomo-Varandas proved in [BV19] that a C1-generic divergence free vector field
has trivial vector field centralizer (they also obtain a generic result for Hamiltonian
flows in the same paper). In a different paper, [BV18], Bonomo-Varandas obtain
that C1-generic sectional Axiom A vector fields have trivial vector field centralizer
(see the introduction of [BV18] for the definition of sectional Axiom A).

In this paper, there are two types of results: general results which study dynam-
ical conditions on X that imply “triviality” of its centralizer, and genericity results.
In what follows we will state our main results.

Quasi-trivial centralizers. We obtain some easy criteria that imply collinearity
of the centralizer. A natural problem is to know when collinearity can be promoted
to quasi-triviality. If Y commutes with X and Y is collinear to X, it is easy to see
that there is a continuous function f , defined on regular (or non-singular) points
such that Y = fX. The problem of going from collinearity to quasi-triviality is a
problem of extending continuously the function f to the entire manifold. This is
not always the case; indeed, in Section 3 we construct an example of a vector field
with collinear centralizer which is not quasi-trivial.

Nevertheless, when all the singularities of a C1 vector field are hyperbolic,
collinearity can actually be promoted to quasi-triviality:

Theorem A. Let M be a compact manifold. If X ∈ X1(M) has collinear C1-
centralizer and all the singularities of X are hyperbolic, then X has quasi-trivial
C1-centralizer.

We stress that we do not require any regularity nor absence of resonance like
conditions on the singularity. This is an important improvement compared with
previous results [BRV18, BV19, BV18] and [Sad79].

A significant part of this paper is dedicated to the proof of the C1-genericity of
quasi-trivial centralizer. This is given in the following theorem:

Theorem B. Let M be a compact manifold. There exists a residual subset R ⊂
X1(M) such that any X ∈ R has quasi-trivial C1-centralizer.

This result is a version for the vector field centralizer of Bonatti-Crovisier-
Wilkinson’s result [BCW09].

Trivial centralizers. Next we see in which situations we can conclude the triv-
iality of the centralizer. It is easy to construct examples of vector fields whose
centralizer is quasi-trivial but not trivial. In Section 4 we explain how Example 2.5
has quasi-trivial centralizer, but not trivial.

The problem of knowing if a vector field with quasi-trivial centralizer has trivial
centralizer is reduced to the problem of knowing when an X-invariant function1 is
constant. This problem will be studied in Section 4.

Our first criterion to obtain triviality is based on the notion of spectral decomposi-
tion. We say that X admits a countable spectral decomposition if the non-wandering
set, Ω(X), satisfies Ω(X) = ti∈NΛi, where the sets Λi are pairwise disjoint, each of
which is compact, X-invariant and transitive, i.e., contains a dense orbit.

1A function is f is X-invariant if Xf = 0, which amounts to saying that f ◦Xt = f , ∀ t ∈ R.
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Theorem C. Let M be a compact connected manifold and let X ∈ X1(M). Assume
that all the singularities of X are hyperbolic, that X admits a countable spectral
decomposition and that the C1-centralizer of X is collinear. Then C1(X) is trivial.

With the assumption of a very weak type of expansivity, called separating (see
Definition 2.3), we can obtain the following result:

Theorem D. If X is a transitive, separating C1 vector field, then X has trivial
C1-centralizer.

We remark that the separating property is much weaker than Komuro expansive-
ness. In particular, our results generalize to a much larger class of vector fields the
results about centralizers of flows from [KM73, Oka76, BRV18]. After this work
was completed, Bakker-Fisher-Hasselblatt in [BFH19] were able to prove a simi-
lar result in the C0-category. However, their result uses a type of expansiveness
stronger than separating, called kinematic expansiveness.

In higher regularity, Pesin’s theory in the non-uniformly hyperbolic case and
Sard’s theorem give us two useful tools to verify triviality of the centralizer. Using
Pesin’s theory as a tool, we obtain the following result:

Theorem E. Let M be a compact manifold of dimension d ≥ 2. Let X ∈ X2(M) be
a vector field with finitely many singularities and let µ be a X-invariant probability
measure such that suppµ = M . If µ is non-uniformly hyperbolic for X, then X has
trivial C1-centralizer.

Theorem E can be applied for non-uniformly hyperbolic geodesic flows, like the
ones constructed by Donnay [Don88] and Burns-Gerber [BG89]. In particular, we
obtain that non-uniformly hyperbolic geodesic flows have trivial centralizer.

In dimension three, under higher regularity assumptions, we are also able to
obtain triviality, for a slightly stronger notion of expansiveness called kinematic
expansive, which is stronger than separating (see Definition 4.8).

Theorem F. Let M be a compact 3-manifold and consider X ∈ X3(M). If X is
Kinematic expansive and all its singularities are hyperbolic, then its C3-centralizer
is trivial.

The technique we use in the above theorem, which relies on Sard’s Theorem, also
leads to a criterion to obtain triviality from a collinear centralizer of high regularity.

Theorem G. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1, and let X ∈ Xd(M). Assume that every singularity and periodic orbit of X

is hyperbolic, that Ω(X) = Per(X) and that the Cd-centralizer of X is collinear.
Then X has trivial Cd-centralizer.

This criterion is not sufficient if we want to obtain a generic result, due to the
lack of a Cd-closing lemma. However, following the arguments of [Man73, Hur86],
we can show that Cd-generically the triviality of the Cd-centralizer is equivalent to
the collinearity of the Cd-centralizer.

Theorem H. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1. There exists a residual set RT ⊂ Xd(M) such that for any X ∈ RT , the
Cd-centralizer Cd(X) of X is collinear if and only if it is trivial.

In the next section we give all the precise definitions used in these theorems. Let
us make a few remarks. In our C1-generic result, we can actually obtain triviality
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in several scenarios, see Theorem 5.1. What is missing to obtain the triviality of
the centralizer for a C1-generic vector field is to prove that a C1-generic vector field
does not admit any non-trivial C1 first integral (see Section 4). This is a conjecture
made by Thom [Thom]. With our result, a complete answer for Question 2 for C1

vector fields is equivalent to answering Thom’s conjecture.
A natural direction in this genericity type of results is to understand what hap-

pens in the generic case in higher regularity. We conclude this introduction with
the following question:

Question 3. Given any manifold M with dimension dimM ≥ 3, does there exist
r > 1 sufficiently large and a Cr-open set U ⊂ Xr(M) such that for any X ∈ U the
Cs-centralizer (for some 1 ≤ s ≤ r) of X is not collinear?

1.1. General notions on vector fields. Before closing this section we recall some
definitions and fix some notations that we shall use throughout the paper. Let M
be a smooth manifold of dimension d ≥ 2, which we assume to be compact and
boundaryless. We shall also fix once and for all a Riemannian metric in M . For
any r ≥ 1, we denote by Xr(M) the space of vector fields over M , endowed with
the Cr topology. A property P for vector fields in Xr(M) is called Cr-generic if it
is satisfied for any vector field in a residual set of Xr(M). Recall that R ⊂ Xr(M)
is residual if it contains a dense Gδ-subset of Xr(M). In particular, it is dense in
Xr(M), by Baire’s theorem.

In the following, given a vector field X ∈ X1(M), we denote by Xt the flow it
generates. Recall that for any Y ∈ C1(X), and for any s, t ∈ R, we have Ys ◦Xt =
Xt ◦ Ys. Differentiating this relation with respect to s at 0, we get

Y (Xt(x)) = DXt(x) · Y (x), ∀x ∈M. (1.1)

We denote by Zero(X) := {x ∈M : X(x) = 0} the set of zeros, or singularities, of
the vector field X, and we set

MX := M − Zero(X). (1.2)

For any x ∈ M and any interval I ⊂ R, we also let XI(x) := {Xt(x) : t ∈ I}. In

particular, we denote by orbX(x) := XR(x) the orbit of the point x under X. Note

that if x ∈MX , then orbX(x) ⊂MX too.

Let X ∈ X1(M) be some C1 vector field. The non-wandering set Ω(X) of X is
defined as the set of all points x ∈M such that for any open neighborhood U of x
and for any T > 0, there exists a time t > T such that U ∩Xt(U) 6= ∅.

Let us also recall another weaker notion of recurrence. Given two points x, y ∈
M , we write x ∼X y if for any ε > 0 and T > 0, there exists an (ε, T )-pseudo
orbit connecting them, i.e., there exist n ≥ 2, t1, t2, . . . , tn−1 ∈ [T,+∞), and x =
x1, x2, . . . , xn = y ∈M , such that d(Xtj (xj), xj+1) < ε, for j ∈ {1, . . . , n− 1}. The
chain recurrent set CR(X) ⊂M of X is defined as the set of all points x ∈M such
that x ∼X x. Restricted to CR(X), the relation ∼X is an equivalence relation. An
equivalence class under the relation ∼X is called a chain recurrent class: x, y ∈
CR(X) belong to the same chain recurrent class if x ∼X y. In particular, chain
recurrent classes define a partition of the chain recurrent set CR(X).

A point x ∈ M is periodic if there exists T > 0 such that XT (x) = x. The set
of all periodic points is denoted by Per(X), observe that we are also including the
singularities in this set.
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An X-invariant compact set Λ is hyperbolic if there is a continuous decomposition
of the tangent bundle over Λ, TΛM = Es⊕〈X〉⊕Eu into DXt-invariant sub-bundles
that verifies the following property: there exists T > 0 such that for any x ∈ Λ,

‖DXT (x)|Es
x
‖ < 1

2
, and ‖DX−T (x)|Eu

x
‖ < 1

2
.

A periodic point x ∈ Per(X) is hyperbolic if orbX(x) is a hyperbolic set. Let γ be a
hyperbolic periodic orbit. We denote by W s(γ) the stable manifold of the periodic
orbit γ, which is defined as the set of points y ∈ M such that d(Xt(y), γ) → 0 as
t → +∞. We define in an analogous way the unstable manifold of γ. It is well
known that the stable and unstable manifolds are C1-immersed submanifolds. A
hyperbolic periodic orbit is a sink if the unstable direction is trivial. It is a source
if the stable direction is trivial. A hyperbolic periodic orbit is a saddle if it is
neither a sink nor a source. For a hyperbolic periodic point p we defined its index
by ind(p) := dimEs.

Organization of the paper: The structure of this paper has two parts. The
first part deals with general criteria for collinearity, quasi-triviality and triviality
of the centralizer (Sections 2, 3 and 4). The second part deals with our generic
results (Sections 5 and 6). In Section 2 we state and prove some criteria for
collinear centralizer. In Section 3 we prove Theorem A. Theorems C, E, F, G and
H are proved in Section 4. Finally in Section 5 we begin the proof of Theorem B,
which is completed in Section 6.

Acknowledgments: The authors would like to thank Javier Correa, Sylvain
Crovisier, Alexander Arbieto, Federico Rodriguez-Hertz, Anna Florio, Martin Sam-
barino, Rafael Potrie, and Adriana da Luz for useful conversations. We thank the
anonymous referee for his suggestions and comments which helped to improve the
presentation of this paper. During part of the preparation of this work, B.S. was
supported by Marco Brunella’s post-doctoral fellowship. We thank the Brunella
family for their generous support.

2. Collinearity

In this section we prove two main criteria which imply collinear centralizer.
The first criterion appeals to the topological dynamics of the flow and is a very
weak form of expansiveness called separating (see Definition 2.3). For instance, all
the usual expansiveness-like notions for flows (Bowen-Walters expansive or Komuro
expansive) imply that the flow is separating, see [Art16] for a throughout discussion.
Our second criterion appeals to infinitesimal behaviour of the flow. We show that
if the derivative is hyperbolic along critical elements (zeros and periodic orbits),
the critical elements are dense in the chain recurrent set and along the wandering
trajectories the flow has the unbounded normal distortion, then the centralizer is
collinear.

Recall that M is a compact Riemannian manifold. Let r, k ≥ 1 be positive
integers. Given x ∈ M and u, v ∈ TxM we denote by 〈u, v〉 the subspace spanned
by u and v in TxM .

Definition 2.1 (Collinear centralizer). We say that X ∈ Xr(M) has a collinear
Ck-centralizer if

dim〈X(x), Y (x)〉 ≤ 1,
7



for every x ∈M and every Y ∈ Ck(X).

We have the following elementary result:

Lemma 2.2. Let X ∈ Xr(M) and assume that the vector field Y ∈ Ck(M)
satisfies dim〈X(x), Y (x)〉 ≤ 1, for every x ∈ M . Then, there exists a function
f ∈ Cs(MX ,R), with s := min{r, k}, such that

Y (x) = f(x)X(x), ∀x ∈MX .

Moreover, the function f is X-invariant, i.e.,

f(Xt(x)) = f(x), ∀x ∈MX , ∀ t ∈ R.

Proof. Let us denote by (·, ·) the scalar product associated to the Riemannian
structure on M . For any x ∈ MX and for any v ∈ TxM , we set πX(x, v) :=

(X(x),v)
(X(x),X(x)) . In particular, πX(x, v)X(x) is the orthogonal projection of the vector

v on the direction spanned by X(x). Let Y ∈ Ck(M) be a vector field that satisfies
dim〈X(x), Y (x)〉 ≤ 1. The function f : MX → R, x 7→ πX(x, Y (x)) is of class Cs,
with s = min{r, k}. Moreover, by the collinearity of the vector fields X and Y , we
have Y = fX.

By (1.1), it holds Y (Xt(·)) = DXt · Y (·). Therefore, for any x ∈ MX and for
any t ∈ R, we have

f(Xt(x))X(Xt(x)) = DXt(x) · (f(x)X(x)) = f(x)DXt(x) ·X(x) = f(x)X(Xt(x)),

where the last equality follows from (1.1), with X in place of Y . Since X(Xt(x)) 6=
0, we obtain f(Xt(x)) = f(x), which concludes the proof. �

The following definition is a very weak form of expansiveness for flows.

Definition 2.3. A vector field X ∈ X1(M) is separating if there exists ε > 0 such

that the following holds: if d(Xt(x), Xt(y)) < ε for every t ∈ R, then y ∈ orbX(x).

We shall now prove the following topological criterion for collinearity, which
generalises [Oka76]. The idea is very simple: the non collinearity of the centralizer
gives rise to a continuum of non-separating trajectories.

Proposition 2.4. If X ∈ X1(M) is separating, then X has collinear C1-centralizer.

Proof. Let X ∈ X1(M) be a separating vector field with separating constant ε > 0
and suppose that there exists Y ∈ C1(X) that is not collinear to X. Thus there is
a point x ∈M such that dim〈X(x), Y (x)〉 = 2.

We fix δ > 0 so that for each s ∈ (−δ, δ), we have dC0(Ys, id) < ε, and
dim〈Y (Ys(x)), X(Ys(x))〉 = 2. Consider a point y = Ys(x), for some s ∈ (−δ, δ).
Since Y ∈ C1(X), we have Xt ◦ Ys = Ys ◦Xt, for every s, t, and thus

d(Xt(y), Xt(x)) = d(Xt(Ys(x)), Xt(x)) = d(Ys(Xt(x)), Xt(x)) < ε, ∀ t ∈ R, (2.1)

because dC0(Ys, id) < ε due to our choice of δ. To obtain a contradiction from (2.1)
it remains to prove that one can choose s ∈ (−δ, δ) so that y = Ys(x) does not
belong to the orbit of x.

For that we apply the flowbox theorem [PM82]. Let (ϕ,U) be a small flowbox for
the vector field X around the point x, that is, ϕ : M ⊃ U → W ⊂ Rd = Rd−1 × R
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is a local chart such that ϕ∗X = (0, 1). As {t ∈ R : Xt(x) ∈ U} ⊂ R is an open set,
there exists a countable 2-by-2 disjoint collection of intervals {Ij} ⊂ R so that

{t ∈ R : Xt(x) ∈ U} =

∞⋃
j=1

Ij .

Consider the set J
def.
= {t ∈ R : ∃ s ∈ (−δ, δ) : Xt(x) = Ys(x)}. Notice that, as

Y (Ys(x)) 6= 0 for every |s| < δ, then for each t ∈ J , there exists a unique s ∈ (−δ, δ)
so that Xt(x) = Ys(x).

We claim that #J ∩ Ij ≤ 1, for every j ∈ N. Let us show how to finish the proof
from this claim: it implies that J is at most countable, and so the there are at most
countably many s so that y = Ys(x) belongs to the X-orbit of x, which concludes.

We are left to prove the claim. Consider the decomposition Rd−1 × R of Rd
into vertical and horizontal components, respectively. We have that Dϕ(Ys(x)) ·
Y (Ys(x)) = (Y1(s), Y2(s)), with Y1(s) ∈ Rd−1 and Y2(s) ∈ R. Since ϕ∗X and ϕ∗Y
are not collinear at ϕ(x) and since ϕ∗X = (0, 1), there exists ρ > 0 so that, for δ
sufficiently small, ‖Y1(s)‖ > ρ, for every |s| < δ. This implies that the curve

s ∈ (−δ, δ) 7→ ϕ(Ys(x))

meets each horizontal line {z} × R at most once. As each orbit segment XIj (x) is
sent by ϕ into horizontal segments we deduce that #J ∩ Ij ≤ 1. This completes
the proof. �

It is important to notice that the separating property is too weak to imply the
quasi-triviality of the centralizer, as the simple example below demonstrates.

Example 2.5. Fix two positive real numbers 0 < a < b and consider the annulus on
R2 given by A := {(x, y) ∈ R2 : a ≤ ‖(x, y)‖ ≤ b}. Using polar coordinates (r, θ)
on A, we consider the vector field X(r, θ) := ∂

∂θ . Observe that every orbit of X is
periodic with different period. It is easy to see that this flow is separating.

Figure 1. Example 2.5.

Given any smooth function f : [a, b]→ R, the vector field Y (r, θ) = f(r)X(R, θ)
commutes with X but is not a constant multiple of X. Thus, in view of Lemma 2.2,
the conclusion of Proposition 2.4 is optimal.
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We remark that the separating property is not generic (see Appendix A). So to
obtain that the C1-centralizer of a C1-generic vector field is collinear we will need
another criterion.

To overcome this, we shall define the notion of unbounded normal distortion.
Let X ∈ X1(M) and let MX := M − Zero(X) be as in (1.2). Over MX we may
consider the normal vector bundle NX defined as NX,p := 〈X(p)〉⊥, for p ∈ MX ,
where 〈X(p)〉⊥ is the orthogonal complement of the direction 〈X(p)〉 inside TpM .
Let ΠX : TMX → NX be the orthogonal projection on NX . On NX we have a well
defined flow, called the linear Poincaré flow, which is defined as follows: for any
p ∈MX , any v ∈ NX,p, and t ∈ R, the image of v by the linear Poincaré flow is

PXp,t(v) := (ΠX
Xt(p)

◦DXt(p)) · v. (2.2)

The key criterion to study the centralizer of C1-generic vector fields is based on
the following property.

Definition 2.6 (Unbounded normal distortion). Let X ∈ X1(M) be a C1 vector
field. We say that X verifies the unbounded normal distortion property if the
following holds: there exists a dense subset D ⊂ M − CR(X), such that for any

x ∈ D, y ∈ M − CR(X) such that y /∈ orbX(x) and K ≥ 1, there is n ∈ (0,+∞),
such that

| log detPXx,n − log detPXy,n| > K.

This is an adaptation for flows of the definition of unbounded distortion used
in [BCW09] to prove the triviality of the C1-centralizer of a C1-generic diffeomor-
phism. Using this property we obtain the following proposition.

Proposition 2.7. Let X ∈ X1(M). Suppose that X verifies the following proper-
ties:

• X has unbounded normal distortion;
• every singularity and periodic orbit of X is hyperbolic;
• CR(X) = Per(X).

Then X has collinear C1-centralizer.

Before giving the proof of Proposition 2.7 we give a criterion of collinearity which
assumes that the derivative “blows up” the size of any vector transverse to the flow
direction. The proof, which is simple, will be used several times, for instance in the
course of proving Proposition 2.7 and Theorem E.

Proposition 2.8. Let X ∈ X1(M). Suppose that X verifies the following condition:
there exists a dense set D ⊂ M such that for any x ∈ D and any non zero vector
v ∈ TxM − 〈X(x)〉, it holds

‖DXt(x) · v‖ → +∞, for t→ +∞ or t→ −∞.

Then X has collinear centralizer.

Proof. Let Y ∈ C1(X). Then, by (1.1), for any x ∈M , and t ∈ R, it holds

Y (Xt(x)) = DXt(x) · Y (x).

Assume that Y (x) is not collinear to X(x). Since this is an open condition, we can
take x belonging to the set D. By compactness of M , we also have supp∈M ‖Y (p)‖ <
+∞. However, by hypothesis,

‖DXt(x) · Y (x)‖ → +∞, for t→ +∞ or t→ −∞,
10



which is a contradiction. �

Some examples of vector fields that verify the conditions of Proposition 2.8 glob-
ally in the manifold are non-uniformly hyperbolic divergence-free vector fields, such
as suspensions of [Ka79] and quasi-Anosov flows [Rob76]. However, as the proof
demonstrates in any region where the derivative behaves as in the statement we
can conclude that any element of the centralizer must be collinear with X in that
region. This observation, as we mentioned above, will be used several times in this
paper.

We also remark that the global assumptions in Propositions 2.4 and 2.8 are not
generic (see Appendix A). Therefore, to overcome this and to obtain that the C1-
centralizer of a C1-generic vector field is collinear we will need the criterion given
by Proposition 2.7.

Let us now give the proof of Proposition 2.7.

Proof of Proposition 2.7. Let X ∈ X1(M) be a vector field with the unbounded
normal distortion property and let D ⊂M − CR(X) be the set given in Definition
2.6. Take Y ∈ C1(X). Assume by contradiction that Y is not collinear with X on
M − CR(X). The set of points x ∈ M such that X(x) and Y (x) are non-collinear
is open, hence by density of the set D, there exists a point x ∈ D such that Y (x)
and X(x) are not collinear.

By the same argument as in the proof of Proposition 2.4, we can always find
s > 0 arbitrarily close to 0 such that Ys(x) /∈ orbX(x). Observe that for any t ∈ R,
it holds

|detPXYs(x),t| = |det ΠX
Xt(Ys(x)).detDXt(Ys(x))|NX,Ys(x)

|.
Since X commutes with Y , we have that

DXt(Ys(x)) = DYs(Xt(x)) ◦DXt(x) ◦ (DYs(x))−1. (2.3)

Using the coordinates NX ⊕ 〈X〉 on TMX , for each s ∈ R, we obtain a linear map
Ls,x : NX,x → 〈X(x)〉 such that

(DYs(x))−1(NX,Ys(x)) = graph(Ls,x).

Furthermore, ‖Ls,x‖ can be made arbitrarily small as s → 0, since Ys is C1-close
to the identity. Using the coordinates NX,x ⊕ 〈X(x)〉, any vector v ∈ graph(Ls,x)
can be written as v = (vN , Ls,x(vN )), where vN := ΠX

x (v). For any such vector v,
for each t ∈ R and using the coordinates NX,Xt(x) ⊕ 〈X(Xt(x))〉, we have

DXt(x) · v =

(
PXx,t(vN ), Ls,x(vN )

‖X(Xt(x))‖
‖X(x)‖

+

(
DXt(x) · vN ,

X(Xt(x))

‖X(Xt(x))‖

))
,

(2.4)
where (·, ·) inside the second coordinate of the right side of (2.4) denotes the scalar
product given by the Riemannian structure.

On the other hand, for any vector vN ∈ NX,x and any t ∈ R, we have

DXt(x) · vN =

(
PXx,t(vN ),

(
DXt(x) · vN ,

X(Xt(x))

‖X(Xt(x))‖

))
. (2.5)

Set c := ‖X(x)‖ > 0, and let c̃ ≥ 1 be a constant such that supp∈M ‖X(p)‖ < c̃.
For any vector vN ∈ NX,x, we obtain

|Ls,x(vN )| ‖X(Xt(x))‖
‖X(x)‖

< ‖Ls,x‖ · ‖vN‖
c̃

c
,

11



which can be made arbitrarily close to 0 by taking s small enough. This holds for
any t ∈ R. Hence, comparing (2.4) and (2.5) we conclude that DXt(x)|graph(Ls,x)

is arbitrarily close to DXt(x)|NX,x
, for any t ∈ R.

By (2.3), we obtain∣∣∣detPXYs(x),t

∣∣∣ =∣∣det ΠX
Ys(Xt(x))|DYs(Xt(x))DXt(x)·graph(Ls,x)

∣∣ · ∣∣detDYs(Xt(x))|DXt(x)·graph(Ls,x)

∣∣ ·
·
∣∣detDXt(x)|graph(Ls,x)

∣∣ · ∣∣(det(DYs(x))−1|NX,Ys(x)

∣∣ =: A ·B · C ·D.

Observe that∣∣detPXx,t
∣∣ =

∣∣∣det ΠX
Xt(p)

|DXt(x)NX,x

∣∣∣ . ∣∣detDXt(x)|NX,x

∣∣ =: I · II.

Notice that B and D are arbitrarily close to 1 if s ∈ R is small enough. By our
previous discussion, for any t ∈ R the value of C is arbitrarily close to the value of
II, for s sufficiently small.

Our previous discussion also implies that DYs(Xt(x))DXt(x) · graph(Ls,x) is
close to DXt(x) ·NX,x, since Ys(Xt(x)) is close to Xt(x). Thus, the value of A can
be made arbitrarily close to the value of I, for s ∈ R small enough. Hence, we can
take s small such that Ys(x) /∈ orbX(x) and

1

2
<

∣∣∣detPXYs(x),t

∣∣∣∣∣detPXx,t
∣∣ < 2, for any t ∈ R.

This is a contradiction with the unbounded normal distortion property. We con-
clude that any vector field Y ∈ C1(X) verifies that Y |M−CR(X) is collinear to
X|M−CR(X).

Suppose that for some x ∈ CR(X) we have that Y (x) is not collinear to X(x).
Since this is an open condition and the hyperbolic periodic points are dense in
CR(X), we can suppose that x is a periodic point. By a calculation similar to the
one made in the proof of Proposition 2.8 we would then have that ‖Y (Xt(x))‖ →
+∞ for t→ +∞ or t→ −∞, which contradicts the fact that supp∈M ‖Y (p)‖ < +∞.
Thus we have that Y is also collinear to X on CR(X). �

3. Quasi-triviality

This section has two parts. In the first part we construct an example of a vector
field whose centralizer is collinear but not quasi-trivial. In the second part we prove
that under the condition that every singularity is hyperbolic we can promote the
collinearity to quasi-triviality.

3.1. Collinear does not imply quasi-trivial. Let us recall in precise terms the
notion of quasi-triviality.

Definition 3.1 (Quasi-trivial centralizer). Given two positive integers 1 ≤ k ≤ r,
we say that X ∈ Xr(M) has a quasi-trivial Ck-centralizer if for every Y ∈ Ck(X),
there exists a C1 function f : M → R such that X · f ≡ 0 and Y (x) = f(x)X(x),
for every x ∈M .

This notion was referred to as unstable centralizer in the work of [Oka76], in the
C0 category. We use the same terminology as [BRV18].

12



It is easy to see that quasi-trivial centralizer implies collinear centralizer. More-
over, arguing as in Lemma 2.2, if X ∈ Xr(M) has a quasi-trivial Ck-centralizer,
then for any Y ∈ Ck(X), the function f in Definition 3.1 is in fact of class Ck in
restriction to MX .

On the other hand, Lemma 2.2 also shows that to obtain a quasi-trivial central-
izer from a collinear centralizer is an issue of knowing whether an invariant function
f : MX → R admits a C1 extension to the set Zero(X). In full generality this is
not always possible, as we demonstrate below.

Example 3.2. In this example we shall exhibit a vector field X ∈ X∞(T3) so that
C1(X) is collinear but not quasi-trivial. The construction produces a vector field
with an uncountable spectral decomposition since it is a fiberwise dynamics. More-
over, the restriction on almost each fiber is separating but the separation is taking
longer and longer times to take place as the fibers converge to some singular fiber,
where the vector field is identically zero. This property will be used to show that,
when comparing different fibers, most orbits will separate. We push a little further
the argument given in Proposition 2.4 to show that even this very weak version of
the separating property is still enough to imply that the centralizer is collinear. By
making the singular fiber highly degenerate, we shall obtain a centralizer which is
not quasi trivial.

We consider S1 = R/Z, and T3 = S1×T2 endowed with the maximum distance.
To start the construction, let V ∈ X∞(T2) generate an irrational flow. We assume
that the inclination of V is smaller than 1. This will simplify some estimations
later. Fix p = (1/2, 1/2) ∈ T2 and consider a smooth function ψ : T2 → [0, 1] such
that ψ−1(0) = {p}. Let Z ∈ X∞(T2) be defined by Z = ψV . As it is described
in Example 2.8 in [Art16], Z is separating. Take any pair of smooth functions
f, g : S1 \ {1/2} → [1,+∞) satisfying

f(s) =
1

(1− 2s)2
and g(s) =

1

(1− 4s2)2
,

for |s− 1/2| < 1/4. We assume that for |s− 1/4| ≥ 1/4 both functions are positive.

In this way, they diverge to +∞ when s→ 1/2, but the function f
g extends smoothly

to S1. Extend Z to T3 by Z(s, x) = (0, Z(x)).
Define the vector field X(s, x) = 1

g(s)Z(s, x). By Theorem 3.8 in [Art16] the

restriction of X to each fiber {s}×T2, with s 6= 1/2, is separating. The separation
constant decreases to 0 as s → 1/2 though. Notice that X is not separating, as it
has infinitely many singularities.

Nevertheless, we claim that X has collinear C1 centralizer.
To prove this claim, we need to introduce some notation. Recall that S1×{0} is

a global transverse section for the irrational flow Vt on T2, and the first return map
is an irrational rotation with angle given by the inclination of the constant vector
V . We shall use first return maps to analyse the separation properties of X. For
the sake of clarity, it will sometimes to be convenient use the notation T2 = S1×S1

and we shall use both notations T3 = S1×S1×S1 and T3 = S1×T2 without further
mention.

Let (q, 0) ∈ S1 × {0} be the first negative hit of p under the irrational flow

Vt. Consider the set Σ
def.
= (S1 \ {1/2}) × (S1 \ {q}) × {0} ⊂ T3. For each Σs

def.
=

{s}× (S1 \{q})×{0}, with s 6= 1/2, there exists a well-defined return time function
τs : S1 \ {q} → (0,∞) and a well-defined first return map fs : S1 \ {q} → S1 \ {q}

13



Figure 2. Example 3.2: two fibers close to the singular fibers and
their corresponding return time functions.

defined by

Xτs(θ)(s, θ, 0)
def.
= (s, fs(θ), 0)

Then, the globally defined2 maps τ : Σ → (0,∞) and f : Σ → Σ are smooth. Ob-
serve that fs is the same irrational rotation for every s, which is determined by
the inclination if the constant vector field V . This is because the trajectories
of X|{s}×T2 , with s 6= 1/2 are the same as the trajectories of V but travelled
with different speeds, and the speed is zero precisely at (s, p). For this reason
we shall make an abuse of notation and write simply f : S1 \ {q} → S1 \ {q} in-
stead of fs. Moreover, the trajectories on each fiber are not only the same, but
travelled with smaller and smaller speeds, decreasing to zero as s approaches 1/2.
This implies that τs(θ) > τs′(θ), for every θ ∈ S1 \ {q}, and every s, s′ such that
0 < |s− 1/2| < |s′ − 1/2|. Also we have that

lim
θ→q

τs(θ) = +∞, for every s 6= 1/2.

Take r < 1/4 and ε < 1/16. Thus, for each s, if (s, x) ∈ Σs and (s, y) satisfies
d ((s, x), (s, y)) < 4ε then y /∈ B(p, r). Also, for each s 6= 1/2 there exists ρ(s) > 0
such that if x /∈ B(p, r) then ‖X(s, x)‖ ≥ ρ(s). Since X(s, x) = (1 − 4s2)Z(s, x),
we see that ρ(s) decreases monotonically to 0 as s→ 1/2.

Now, take Y ∈ C1(X) and a point (s, x) ∈ T3. Assume by contradiction that
dim〈Y (s, x), X(s, x)〉 = 2. Since this is an open condition invariant under the flow
of X we can assume that s 6= 1/2 and that x = (θ, 0), with θ 6= q.

Then, as in (2.1), there exists ξ0 > 0 small enough so that for every ξ ∈ (−ξ0, ξ0)
and (s′, y) = Yξ(s, x) we have

d(Xt(s
′, y), Xt(s, x)) < ε, for every t ∈ R. (3.1)

Up to replacing Y with −Y , we can assume that 0 < |s−1/2| ≤ |s′−1/2|. As θ 6= q,
if ξ0 is small enough we can ensure that (s′, y) is not on the same orbit as (s′, q).
Thus, we can consider the point y′ = (θ′, 0) which is the first negative hit of the
point (s′, y), under the flow Xt, to the section Σs′ . In particular, (s′, y′) = Xδ(s

′, y)

2that is, τ(s, x) = τs(x) and f(s, x) = fs(x).
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with |δ| as small as we please, provided that ξ0 is small enough. Therefore, we can
assume without loss of generality that the point y in (3.1) is of the form (θ′, 0) ∈ Σs.

We consider first the case θ = θ′. Then, necessarily we must have 0 < |s−1/2| <
|s′ − 1/2| and thus τs(f

`(θ)) − τs′(f `(θ)) > 0 for every ` ≥ 0. Also, as f is an
irrational rotation, there is a subsequence `j such that f `j (θ) → b 6= q. This
implies that

lim
n→∞

n−1∑
`=0

τs(f
`(θ))−

n−1∑
`=0

τs′(f
`(θ)) = +∞.

Denote T =
∑n−1
`=0 τs(f

`(θ)) and t =
∑n−1
`=0 τs′(f

`(θ)), for some n large enough so
that ρ(s)(T − t) > 2ε. Notice that, (3.1) and our choice of ε imply that the orbit
segment X[t,T ](s

′, y) is a line segment whose length is smaller than 2ε and which is
disjoint from B((s′, p), r). Therefore, ‖X|X[t,T ](s′,y)‖ ≥ ρ(s′) > ρ(s) and thus

2ε < ρ(s′)(T − t) ≤ 2ε,

a contradiction.
So it remains to consider the case θ 6= θ′. In this case, as f is an irrational

rotation, one finds a sequence nj →∞ such that fnj (θ)→ q while fnj (θ′)→ b, for
some b 6= q. This implies that

τs(f
nj (θ))− τs′(fnj (θ′)) >

4ε

ρ(s)
, for every j large enough.

Denote similarly as before T =
∑nj−1
`=0 τs(f

`(θ)) and t =
∑nj−1
`=0 τs′(f

`(θ′)), for
some j large enough. Arguing as in the previous case, we can estimate

|T − t| ≤ 2ε

ρ(s)
.

Consider T̃ := T + τs(f
nj (θ)) and t̃ := t + τs′(f

nj (θ′)). Again, (3.1) allows us to

estimate ρ(s)(T̃ − t̃) ≤ 2ε. On the other hand,

T̃ − t̃ = T − t+ τs(f
nj (θ))− τs′(fnj (θ′)) >

2ε

ρ(s)
,

a contradiction again. This establishes our claim.
On the other hand, the vector field Y = f

gZ is smooth and commutes with X.

Indeed, both vector fields vanish at the fiber {1/2} × T2. Moreover, both f and g
are constant on each fiber and for s 6= 1/2 one has

Y (s, x) = f(s)X(s, x).

As X is tangent to each fiber {s}×T2, we conclude that [X,Y ] = 0. Since f(s)→∞
as s→ 1/2, this proves that X does not have a quasi-trivial centralizer.

The vector field of Example 3.2 is not separating and has uncountably many
singularities. We believe that it is an important question to know whether of not
this can be relaxed.

Question 1. Is there a separating vector field whose centralizer is not quasi-trivial?
What about a vector field with just finitely many singularities?

We do not know what to expect as an answer to this question. Also, to illustrate
the difficulty of this problem, let us mention another question, which remains open,
despite of being a very special case of the former.
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Question 2. Let X ∈ X1(M) be a Komuro-expansive vector field, having non-
hyperbolic singularities. Is it true that C1(X) is quasi-trivial?

We do not give the precise definition of Komuro-expansiveness (see for instance
[BRV18] or [Art16]). Let us only mention that it is a notion of geometric orbit
separation, which is stronger than separating and kinematic expansiveness (see
Definitions 2.3 and 4.8, respectively).

3.2. The case of hyperbolic zeros. The main result of this section is Theo-
rem 3.4 below, in which we obtain the quasi-triviality from collinearity of C1(X)
assuming only that all the singularities of X are hyperbolic.

Definition 3.3. A function f : M → R is called a first integral of X if it is of class
C1 and satisfies X · f ≡ 0. We denote by I1(X) the set of all such maps.

In particular, for any c ∈ R, the constant map c(x) := c is in I1(X), and then,
we always have R ' {c : c ∈ R} ⊂ I1(X). The following theorem is a reformulation
in terms of I1(X) of Theorem A.

Theorem 3.4. Let X ∈ X1(M). If X has collinear centralizer and all the singu-
larities of X are hyperbolic, then X has quasi-trivial C1-centralizer, in the sense of
Definition 3.1. More precisely, we have

C1(X) = {fX : f ∈ I1(X)}.

This theorem is an immediate consequence of Propositions 3.5, 3.6, and 3.7 be-
low. We divide the proof into two subsections to emphasize that the technique
to deal with singularities that are saddles is different from the technique to deal
with sinks and sources. We also remark that Theorem 3.4 gives a significant im-
provement compared with previous works on centralizers of vector fields, since we
only need C1 regularity. The results that were known previously used Sternberg’s
linearisation results, which require higher regularity of the vector field and non-
resonant conditions on the eigenvalues of the singularity, see for instance [BRV18]
and [BV19].

3.3. When the singularity is of saddle type. Given any vector field X ∈
X1(M), and Y ∈ C1(X), by Lemma 2.2, we know that Y |MX

= fX|MX
, for some

C1, X-invariant function f : MX → R. Assume that σ ∈ Zero(X) is a saddle type
singularity. In Propositions 3.5 and 3.6, we show that f can be extended to a C1

function in a neighborhood of σ.

Proposition 3.5. Let X ∈ X1(M) and let f : MX → R be an X-invariant con-
tinuous function. If σ ∈ Zero(X) is a saddle type singularity, then f admits a
continuous extension to σ.

The argument below was already given in case 2 of Lemma 3.6 in [BRV18]. We
include it here for the sake of completeness.

Proof. Recall that M has dimension d ≥ 0. For simplicity, denote ds
def.
= ind(σ) and

du
def.
= d − ds. Fix a point ps ∈ W s

loc(σ). We claim that for any point qu ∈ Wu(σ)
we have that f(ps) = f(qu). By the X-invariance of f , it is enough to consider
qu ∈ Wu

loc(σ). Let (Ds
n)n∈N be a sequence of discs of dimension ds, centered at qu,

with radius 1
n and transverse to Wu

loc(σ). Similarly, consider a sequence (Du
n)n∈N

of discs of dimension du, centered at ps, with radius 1
n , and transverse to W s

loc(σ).
16



For each n ∈ N, by the λ-lemma (see [PM82], Chapter 2.7) there exists tn > 0
such that Xtn(Du

n) t Ds
n 6= ∅. In particular, there exists a point xn ∈ Du

n that
verifies Xtn(xn) ∈ Ds

n. It is immediate that xn → ps, as n → +∞. Since the
function f is continuous on MX , we have that f(xn) → f(ps). We also have that
Xtn(xn) → qu as n → +∞. Hence, f(Xtn(xn)) → f(qu). By the X-invariance of
f , we have

f(ps) = lim
n→+∞

f(xn) = lim
n→+∞

f(Xtn(xn)) = f(qu).

Analogously, we can prove that for a fixed q′u ∈ Wu
loc(σ) and for any p′s ∈ W s(σ),

it is verified f(p′s) = f(q′u). We conclude that f |W s(σ)−{σ} = f |Wu(σ)−{σ} = c, for
some constant c ∈ R. In particular, we can define a continuous extension of f to
the singularity σ by setting f(σ) := c. �

Figure 3. Proposition 3.6.

The proposition below is our main novelty regarding the extension problem for
saddle type singularities. We stress that the C1 extension even in this case was not
done in previous works.

Proposition 3.6. Let X ∈ X1(M) and let f : MX → R be an X-invariant function
of class C1. If σ ∈ Zero(X) is a saddle type singularity, then

lim
x→σ
∇f(x) = 0.

In particular, f can be extended to a C1 function in a neighborhood of σ, by setting
∇f(σ) := 0.

Proof. Given ε > 0 we shall find r > 0 so that if d(x, σ) < r then ‖∇f(x)‖ < ε. For
simplicity of notation, consider, for each x ∈MX , the linear mapDf(x) : TxM → R,
given by

Df(x)v = (∇f(x), v) .
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Fix r0 > 0 so that B(σ, 2r0) ∩ Zero(X) = {σ} and also that K? def.
= W ?

loc(σ) ∩
∂B(σ, r0) is a non-empty compact subset of W ?

loc(σ), for ? = s, u. Consider

C
def.
= sup {‖Df(p) · v‖ : v ∈ TpM, ‖v‖ = 1, p ∈ Ks ∪Ku} .

Then, since f : MX → R is C1 and since (Ks ∪ Ku) ∩ Zero(X) = ∅, there exists
β0 > 0 such that is x ∈ B(p, β0), for some p ∈ Ks∪Ku and if v ∈ TxM has ‖v‖ = 1
then ‖Df(x) · v‖ ≤ 2C.

Now, by the λ-lemma, given 0 < r < r0 there exists 0 < β < β0 so that the
following property holds: given points ps ∈ Ks and pu ∈ Ku, and given embedded
disks Ds

β and Du
β , of dimension ds and du, centered in pu and ps, with diameter

smaller than β and transverse to Wu
loc(σ) and W s

loc(σ), respectively, there exists
ts, tu > 0 such that the set

Dsu
β

def.
= Xtu(Du

β) ∩X−ts(Ds
β)

is a singleton contained in B(σ, r).
Moreover, for each x ∈ B(σ, r) \ {σ} there exists a choice of 0 < β < β0,

and p? ∈ K?, ? = s, u, so that Dsu
β = {x}. For that, it suffices to work in

local coordinates and extend the embedded disks W s
loc(σ) and W s

loc(σ) to a pair of
transverse foliations by embedded disks and then take pre-images and images by
the flow. Notice that ts, tu → +∞ uniformly in x as r → 0.

Thus, given a point x ∈ B(σ, r) \ {σ} we take the aforementioned points ps, pu

and the disks Du
β and Ds

β . Since Dsu
β = {x}, there are points xu ∈ Du

β and

xs ∈ Ds
β so that x = Xtu(xu) = X−ts(xs). With them, define the subspaces

Eux
def.
= DXtu(xu)TxuDu

β and Esx
def.
= DX−ts(xs)TxsDs

β . The λ-lemma also implies

that ∠(E?x, E
?(σ)) → 0 as r → 0, where TσM = Es(σ) ⊕ Eu(σ) is the hyperbolic

decomposition. In particular, one has TxM = Esx ⊕ Esx.
By continuity of the derivative DXt and by the hyperbolicity of the splitting

Es(σ)⊕Eu(σ), for every w ∈ TxuDu
β with ‖w‖ = 1, we have ‖DXtu(xu) ·w‖ → ∞

uniformly as r → 0 (recall that tu, ts → +∞ uniformly as r → 0). Similarly, if
w ∈ TxsDs

β has ‖w‖ = 1 then ‖DX−ts(xs) ·w‖ → 0 uniformly as r → 0. Therefore,

for r > 0 sufficiently small if w ∈ TxuDu
β is a unit vector then ‖DXtu(xu)·w‖ > 2C/ε

and similarly ‖DX−ts(xs) · w‖ > 2C/ε, if w ∈ TxsDs
β has ‖w‖ = 1.

We now use the fact that f is an invariant function. Indeed, the equation f =
f ◦Xt, which holds true in MX and for every t ∈ R, by assumption, implies that

Df(y) · w = Df(Xt(y))DXt(y) · w, for every y ∈MX , t ∈ R.

Since every unit vector v ∈ Eux can be written as v = DXtu (xu)·w
‖DXtu (xu)·w‖ , for some unit

vector w ∈ TxuDu
β , one deduces that if r > 0 is small enough then

‖Df(x) · v‖ =
Df(Xtu(xu))DXtu(xu) · w

‖DXtu(xu) · w‖
=

Df(xu) · w
‖DXtu(xu) · w‖

<
2C

2C/ε
= ε,

for every v ∈ Eux , with ‖v‖ = 1. In a similar way we show that ‖Df(x) · v‖ < ε for
every unit vector v ∈ Esx. As ∠(Esx, E

u
x ) is uniformly bounded away from zero, from

the cosine law we deduce that ‖Df(x) · v‖ < 4ε, for every unit vector v ∈ TxM .
This completes the proof. �
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3.4. When the singularity is type sink or source. We now deal with hyper-
bolic singularities of type sink or source. We stress that, together with Proposi-
tion 3.6, the result below is the main novelty of our paper regarding criteria for
quasi-triviality. We are able to obtain a C1 extension without any generic or non-
resonance assumption. We solve the extension problem only using the hyperbolicity
of the singularity. Compare with [Sad79, BRV18, BV19].

Proposition 3.7. Let X,Y ∈ X1(M) such that [X,Y ] = 0 and dim〈X(x), Y (x)〉 ≤
1, for every x ∈ M . Assume that σ ∈ Zero(X) is a hyperbolic sink. Then, there
exists c ∈ R such that Y (x) = cX(x), for every x ∈W s(σ).

In the proof of Proposition 3.7 we shall use the following elementary lemma.

Lemma 3.8. Let (E, ‖ · ‖) be a finite-dimensional vector space endowed with a
norm. Let Λ be an infinite set and assume that for each λ ∈ Λ, there exists a non-
empty compact subset Kλ ⊂ S := {v ∈ E : ‖v‖ = 1} of the sphere of unit vectors in
(E, ‖ · ‖), such that

λ′ 6= λ in Λ =⇒ Kλ ∩Kλ′ = ∅.
Suppose that dimE ≥ 2. Then, there exist a finite subset {λ, λ1, . . . , λk} ⊂ Λ and
vectors {u, u1, . . . , uk} such that

(1) u ∈ Kλ and u` ∈ Kλ`
, for each ` = 1, . . . , k;

(2) u belongs to the subspace spanned by {u1, . . . , uk};
(3) {u1, . . . , uk} is a linearly independent set.

Proof. We begin with a simple observation that we will use repeatedly in this proof:
for each u ∈ S, −u is the only other vector in S which is collinear with u.

Now, since Λ is infinite, we can pick a sequence (λn)n≥0 ⊂ Λ, whose terms are
distinct. For each n, choose a vector un ∈ Kλn

. Since dimE ≥ 2, and the sets Kλ

are pairwise disjoint, by the simple observation above, we can assume without lost
of generality that the set {u1, u2} is linearly independent. Assume by contradiction
that the conclusion does not hold. Then, it follows by induction that for every n
the set {u1, u2, u3, . . . , un} must be linearly independent. But this is absurd as E
is finite dimensional. �

Proof of Proposition 3.7. By Lemma 2.2, for any x ∈ MX , we have Y (x) =
f(x)X(x), for some C1 function f : MX → R. Notice that, as σ is an isolated
zero of X, we have σ ∈ Zero(Y ). Take ε > 0 small so that B(σ, ε) ⊂W s(σ) and let
S := ∂B(σ, ε). In particular, notice that x ∈ S implies limt→+∞Xt(x) = σ.

Also notice that for every x ∈ W s(σ), there exists T ∈ R such that XT (x) ∈ S.
Therefore, since f(Xt(x)) = f(x) for every x ∈ MX and t ∈ R, the proof of the
proposition is reduced to the proof of the following claim.

Claim 1. Df(p) = 0 for every p ∈ S.

We shall postpone the proof of Claim 1. Take a point p ∈ S and consider the set

V (p) :=

{
u ∈ TσM : ∃ tn →∞, u = lim

n→∞

X(Xtn(p))

‖X(Xtn(p))‖

}
.

By compactness, V (p) is non-empty, and every u ∈ V (p) is a unit vector; in partic-
ular, 0 /∈ V (p). The following claims are the key arguments for this proof.

Claim 2. If u ∈ V (p) then DY (σ) · u = f(p)DX(σ) · u.
19



Proof. Fix some t ∈ R. Since Y (Xt+s(p)) = f(p)X(Xt+s(p)) for every s ∈ R,
taking the derivative with respect to s on both sides we obtain

DY (Xt(p)) ·
(

X(Xt(p))

‖X(Xt(p))‖

)
= f(p)DX(Xt(p)) ·

(
X(Xt(p))

‖X(Xt(p))‖

)
.

By using this formula with t = tn and letting n→∞ we conclude that DY (σ) ·u =
f(p)DX(σ) · u, proving the claim. �

Claim 3. If p, q ∈ S and V (p) ∩ V (q) 6= ∅ then f(p) = f(q).

Proof. Assume that there exists u ∈ V (p) ∩ V (q). Then, by Claim 2, one has

DY (σ) · u = f(p)DX(σ) · u = f(q)DX(σ) · u.
As DX(σ) is an invertible linear map (because all eigenvalues are negative) this
implies that (f(p)− f(q))u = 0, and since u 6= 0, the claim is proved. �

We are now in position to give the proof of Claim 1. Assume by contradiction
that the claim is not true. Then, there exist U ⊂ S and real numbers a < b such
that f : U → [a, b] is surjective.

Now, for every t ∈ [a, b], we choose some point pt ∈ U ∩ f−1(t), and we consider
the family of compact subsets {V (pt)}t∈[a,b] ⊂ TσM of unit vectors. As t 6= s
implies f(pt) 6= f(ps), one obtains from Claim 3 that the family {V (pt)}t∈[a,b]

satisfies all the assumptions of Lemma 3.8.
Thus, there exists a finite set {p, p1, . . . , pk} ⊂ U and vectors u ∈ V (p), u` ∈

V (p`), ` = 1, . . . , k, with u ∈ 〈u1, . . . , uk〉 and {u1, . . . , uk} linearly independent,
and such that f(pi) 6= f(pj) 6= f(p), for every i, j ∈ {1, . . . , k}.

Take α1, . . . , αk ∈ R such that u =
∑k
`=1 α

`u`. Using Claim 2 we can write

DY (σ) · u = f(p)DX(σ) · u = DX(σ) ·

(
k∑
`=1

f(p)α`u`

)
.

Also

DY (σ) · u` = f(p`)DX(σ) · u`, ∀ ` = 1, . . . , k,

which implies that

DY (σ) · u = DX(σ) ·

(
k∑
`=1

f(p`)α
`u`

)
.

Since DX(σ) is invertible we must have
∑k
`=1 f(p)α`u` =

∑k
`=1 f(p`)α

`u`, and as
{u1, . . . , uk} are linearly independent, this gives

f(p)α` = f(p`)α
`, for every ` = 1, . . . , k.

Since u 6= 0 there exists some α` 6= 0. However, this implies that f(p) = f(p`), a
contradiction. �

We now give the proof of Theorem 3.4.

Proof of Theorem 3.4. Assume that C1(X) is collinear and that each singularity
σ ∈ Zero(X) is hyperbolic. Let us consider Y ∈ C1(X). By Lemma 2.2, there
exists a C1 function f : MX → R which satisfies X · f ≡ 0 on MX and such that
Y (x) = f(x)X(x), for every x ∈ MX . By assumption, the singularities of X
are hyperbolic, hence they are isolated, and Y (σ) = 0, for all σ ∈ Zero(X). By
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Propositions 3.5, 3.6 and 3.7, we can extend f to a C1 invariant function on M .
We conclude that f is a first integral of X, and Y = fX.

Conversely, assume that f : M → R is a first integral of X. We define a vector
field Y ∈ X1(M) as Y (x) := f(x)X(x), for every x ∈ M . Indeed, both f and X
are of class C1, thus Y is C1 too. Moreover, we have Y ∈ C1(X), since

[X,Y ] = (X · f)X + f [X,X] = 0. �

4. The study of invariant functions and trivial centralizers

The main focus of this section is the study of invariant functions. An invariant
function is also called a first integral of the system. There are several works that
study the existence of non trivial (non constant) first integrals, see for instance
[Man73, Hur86, FS04, Pag11, FP15, ABC16, BF19, BFW19]. In this work we
study dynamical conditions that imply the non-existence of first integrals.

First, it is easy to obtain examples of vector fields with quasi-trivial C1-
centralizer which is not trivial. Indeed consider the vector field in example 2.5.
Since X is separating, it has collinear C1-centralizer. This flow is non-singular,
hence it has quasi-trivial C1-centralizer. Now take any non-constant C1-function
f which is constant on each orbit, that is, a function which depends only on the
coordinate r. The vector field Y = fX belongs to the C1-centralizer of X, therefore
the centralizer of X is only quasi-trivial.

Let X ∈ X1(M). Recall that a compact set Λ is a basic piece for X if Λ is
X-invariant and transitive, that is, it has a dense orbit. We say that X admits a
countable spectral decomposition if Ω(X) = ti∈NΛi, where the sets Λi are pairwise
disjoint basic pieces.

Theorem 4.1. Let X ∈ X1(M). If X admits a countable spectral decomposition
then any continuous X-invariant function is constant.

Proof. Let f : M → R be a continuous X-invariant function. Suppose that f is
not constant. Since M is connected, there exist two real numbers a < b such
that f(M) = [a, b]. It is easy to see that in each basic piece the function f is
constant: this follows from the transitivity of each basic piece. For each i ∈ N
define ci := f(Λi). Since X admits a countable spectral decomposition, the set
C := {c1, c2, . . . } is at most countable and in particular [a, b] − C is non-empty.
Take any value c ∈ [a, b]− C and consider Λ := f−1({c}).

The set Λ is compact and X-invariant. Hence, for any point p ∈ Λ we must have
ω(p) ⊂ Λ, where ω(p) is the set of all accumulations points of the future orbit of
p. By the countable spectral decomposition, ω(p) must be contained in some basic
piece Λi, which implies that Λ∩Λi 6= ∅. Since Λ is a level set of f , this implies that
ci = f(Λi) = f(Λ) = c and this is a contradiction with our choice of c. �

Theorem C follows easily from Theorems A and 4.1. Let us now give some
applications.

In [Pei60], Peixoto proved that a C1-generic vector field on a compact surface is
Morse-Smale. Recall that a vector field is Morse-Smale if the non-wandering set is
the union of finitely many hyperbolic periodic orbits and hyperbolic singularities,
and it verifies some transversality condition. In particular, the non-wandering set
is finite. As a consequence of this result of Peixoto and Theorems B and C, we have
the following corollary.
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Corollary A. Let M be a compact connected surface. Then, there exists a residual
set R† ⊂ X1(M) such that for any X ∈ R†, the C1-centralizer of X is trivial.

A C1-vector field X is Axiom A if the non-wandering set is hyperbolic and
Ω(X) = Per(X). It is well known that Axiom A vector fields admits a spectral
decomposition, with finitely many basic pieces. As a corollary of our Theorems B
and C, we obtain the following result which is the main theorem in [BV18].

Corollary B (Theorem 1.1 in [BV18]). A C1-generic Axiom A vector field has
trivial C1-centralizer.

Remark 4.2. Corollary B actually holds for more a general type of hyperbolic system
called sectional Axiom A, in any dimension. We refer the reader to Definition 2.14
in [MM08] for a precise definition. In [BV18], the authors also proved the triviality
of the C1-centralizer for sectional Axiom A flows in dimension three.

Another corollary is for C1-vector fields far from homoclinic tangencies in di-
mension three. Let us make it more precise. Recall that a vector field X ∈ X1(M)
has a homoclinic tangency if there exists a hyperbolic non-singular closed orbit γ
and a non-transverse intersection between W s(γ) and Wu(γ). By the proof of Palis
conjecture in dimension three given in [CY17], a C1-generic X ∈ X1(M) which can-
not be approximated by such vector fields admits a finite spectral decomposition,
hence:

Corollary C. Let M be a compact connected 3-manifold. Then there exists a
residual subset R‡ ⊂ X1(M) such that any vector field X ∈ R‡ which cannot
be approximated by vector fields exhibiting a homoclinic tangency has trivial C1-
centralizer.

As a simple application of Proposition 2.4 and Theorem C, we obtain the trivial-
ity of the centralizer of the flow introduced in [Art15]. This example is a transitive
Komuro expansive flow on the three-sphere such that all its singularities are hyper-
bolic. In particular, by the discussion in [Art16], this flow is separating.

4.1. First integrals and trivial C1-centralizers. Recall that for any X ∈
X1(M), we let I1(X) := {f ∈ C1(M,R) : X · f ≡ 0} be the set of all C1 functions
which are invariant under X. As an easy consequence of Theorem A, we obtain the
following lemma.

Lemma 4.3. Let X ∈ X1(M). Assume that the singularities of X are hyperbolic
and that the C1-centralizer of X is collinear. Then X has trivial C1-centralizer if
and only if the set of first integrals of X is trivial, i.e., I1(X) ' R.

As an immediate consequence of Theorem 4.1 and Lemma 4.3, we obtain:

Corollary 4.4. Let X ∈ X1(M) be such that X admits a countable spectral de-
composition and all its singularities are hyperbolic. If the C1-centralizer of X is
collinear, then it is trivial.

The following lemma will be used several times in this section.

Lemma 4.5. Let M be a compact and boundaryless (closed) manifold of dimension
d ≥ 1 and let X ∈ X1(M). Then, for any f ∈ I1(X) and for any hyperbolic
singularity or hyperbolic periodic point p ∈ Zero(X) ∪ Per(X), we have ∇f(p) = 0.
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Proof. Let X ∈ X1(X) be as above and let f ∈ I1(X). If σ ∈ Zero(X) is a
hyperbolic singularity, then it follows from Propositions 3.6 and 3.7 that∇f(σ) = 0.
Assume now that for some regular hyperbolic periodic point p ∈ Per(X), we have
∇f(p) 6= 0. Then, we have the hyperbolic decomposition along its orbit given by

TorbX(p)M = Es ⊕ 〈X〉 ⊕ Eu.
Note that f |W s(p) = f |Wu(p) = f(p): this follows easily from the X-invariance of f .

Since ∇f(p) 6= 0, by the local form of submersion, we have that Σ := f−1({f(p)})
is locally contained in a submanifold D of dimension d− 1. In particular, TpD is a
subspace of dimension d− 1 contained in TpM . However, our previous observation
implies that W s

loc(p) ⊂ Σ and Wu
loc(p) ⊂ Σ. This implies that Es(p) ⊕ 〈X(p)〉 ⊕

Eu(p) ⊂ TpD. By the hyperbolicity of p, we have that TpM = Es(p) ⊕ 〈X(p)〉 ⊕
Eu(p), but this is a contradiction with the fact that TpD has dimension d− 1. �

For surfaces where the Poincaré-Bendixson Theorem holds true, any level set of
an invariant function f has to contain a singularity or a periodic orbit, which forces
f to be constant in the generic case where the latter are hyperbolic.

Proposition 4.6. Let M := S2 be the two dimensional sphere, and let X ∈ X1(M)
be such that every singularity and periodic orbit of X is hyperbolic. Then any
continuous function that is invariant under the flow X is constant.

Proof. Let X ∈ X1(M) be as above, and let f : X → R be a continuous function
which satisfies f(Xt(x)) = f(x) for all x ∈ M and t ∈ R. Assume that f is non-
constant. Then f(M) = [a, b], with a < b ∈ R. By assumption, each singularity of
X is hyperbolic, hence there are finitely many of them. Let c ∈ [a, b]− f(Zero(X)).
For any x ∈ f−1({c}), it follows from Poincaré-Bendixson Theorem that ω(x) is a
closed orbit formed by regular points, and by our assumption, ω(x) is hyperbolic.
Moreover, ω(x) ⊂ f−1({c}), since f is invariant under X. In particular, for each
c ∈ [a, b]− f(Zero(X)), the level set f−1({c}) contains a hyperbolic periodic orbit.
This is a contradiction, since [a, b]− f(Zero(X)) is uncountable, while there can be
at most countably many hyperbolic periodic orbits. �

4.2. Some results in higher regularity. Using Sard’s theorem and Pesin’s the-
ory we can obtain more information about the invariant functions.

Theorem 4.7. Let M be a closed and connected Riemannian manifold of dimen-
sion d ≥ 1 and let X ∈ X1(M). Suppose that X verifies the following conditions:

• every singularity and periodic orbit of X is hyperbolic;
• Ω(X) = Per(X).

Then any function f : MX → R which is X-invariant and such that f |MX
is of

class Cd is constant.

Proof. Let f : MX → R be an X-invariant function such that f |MX
is of class Cd.

By assumption, each singularity σ ∈ Zero(X) is hyperbolic, thus by Propositions 3.5
and 3.7, f admits a continuous extension to the whole manifold M . Suppose that f
is not constant. Then, there exist two real numbers a < b such that f(M) = [a, b].
All the singularities are hyperbolic, hence there are at most finitely many of them.
In particular, there exists a non-trivial open interval I ⊂ f(M)−f(Zero(X)). Since
f |MX

is of class Cd, then by Sard’s theorem, there exists a set R ⊂ I of full Lebesgue
measure, such that each c ∈ R is a regular value of f , that is, any x ∈ f−1({c})
verifies ∇f(x) 6= 0.
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Fix a value c ∈ R− f(Zero(X)). By the same reason as in the proof of Theorem
4.1, we have that f−1({c}) ∩ Ω(X) 6= 0. The fact that c is a regular value implies
that there exists y ∈ Ω(X)∩MX such that ∇f(y) 6= 0, thus by the continuity of X
and ∇f , there exists a neighborhood V ⊂ MX of y such that the gradient of f is
non-zero at any q ∈ V. Using the density of periodic points in the non-wandering
set, we conclude that there exists a regular periodic point p ∈ Per(X)∩V such that
∇f(p) 6= 0. By Lemma 4.5, we get a contradiction, since by assumption, the point
p is hyperbolic. �

As a consequence of Theorem 4.7, we can prove Theorem G.

Proof of Theorem G. Let X ∈ Xd(M) be as above and let Y ∈ Cd(X). By the
collinearity of Cd(X), and since all the singularities of X are hyperbolic, Lemma
2.2 and Theorem 3.4 imply that Y = fX, where f is a X-invariant C1 function
such that f |MX

is of class Cd. We deduce from Theorem 4.7 that f is constant.
Therefore, Cd(X) is trivial. �

Using the ideas from [Man73], we are able to prove Theorem H.

Proof of Theorem H. By Kupka-Smale Theorem (see Theorem 3.1 in [PM82]),
there exists an open and dense subset UKS ⊂ Xd(M) such that for any X ∈ UKS ,
any singularity of X is hyperbolic. Let S(M) be the pseudometric space of sub-
sets of M with the Hausdorff pseudometric. By [Tak71], there exists a resid-
ual subset Rd ⊂ Xd(M) such that the function Ω: Rd → S(M) which assigns
to X ∈ Rd its non-wandering set is continuous. Let us define the residual set
RT := UKS ∩ Rd ⊂ Xd(M), and let X ∈ RT . Notice that X has finitely many
singularities, since they are hyperbolic.

Suppose that X has collinear Cd-centralizer and let Y ∈ Cd(X). By the collinear-
ity, as a consequence of Lemma 2.2 and Theorem 3.4, we have Y = fX, for some
X-invariant C1 function f such that f |MX

is of class Cd. Assume that f is non-
constant. Then, as in the proof of Theorem 4.7, f(M)−f(Zero(X)) contains a non-
trivial open interval I ⊂ R. Consider a regular value c ∈ I (this set is non-empty
by Sard’s theorem) and let Mc = f−1({c}). We now describe Mañé’s argument
from Theorem 1.2 in [Man73]. Let U be a small open neighborhood of Mc. Since
Ω(X) ∩ U 6= ∅, by the continuity of Ω(·) at X, for any X ′ in a neighborhood of X
verifies Ω(X ′)∩U 6= ∅. Consider the gradient ∇f |Mc , since it is nonzero on Mc we
can extend it to a vector field V : U → TU without singularities. We can take a C1

vector field Z that is C1-arbitrarily close to the zero vector field, with the following
property: for any x ∈ U , (Z(x), V (x)) > 0. For the vector field X ′ = X + Z, it is
easy to verify that Ω(X ′)∩U = ∅, a contradiction. We conclude that f is constant,
and thus, Cd(X) is trivial. �

4.2.1. C2 flows with hyperbolic measures. Consider a probability measure µ on M
and X ∈ X1(M). We say that µ is X-invariant if for any measurable set A ⊂ M
and any t ∈ R we have µ(A) = µ(Xt(A)). By Oseledets theorem, for µ-almost every
point x, there exist a number 1 ≤ l(x) ≤ d and l(x)-numbers λ1(x) < . . . < λl(x)(x)
with the following properties: there exist l(x)-subspaces E1(x), . . . , El(x)(x) such
that TxM = E1(x)⊕· · ·⊕El(x)(x) and for each i = 1, . . . , l(x) and for any non zero
vector v ∈ Ei(x) we have

lim
t→±∞

log ‖DXt(x) · v‖
t

= λi(x).
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The numbers λi are called Lyapunov exponents. We say that µ is non-uniformly
hyperbolic if for µ-almost every point all the Lyapunov exponents are non-zero
except the direction generated by the vector field X.

Using Pesin’s theory and ideas similar to the proof of Lemma 4.5, we can prove
Theorem E.

Proof of Theorem E. Since the support of µ is the entire manifold, and by non-
uniform hyperbolicity, we have that X verifies the conditions of Proposition 2.8, in
particular, C1(X) is collinear. Let Y be a vector field in the C1-centralizer of X.
there exists a C1-function f : MX → R such that Y = fX on MX .

Notice that MX is a connected open and dense subset of M . If f were not
constant, then it would exist a point p ∈ MX such that ∇f(p) 6= 0. Since this
condition is open we may take the point p to be a regular point of the measure
µ. By Pesin’s stable manifold theorem, there exists a C1-stable manifold, W s

loc(p),
which is tangent to E−(p) ⊕ 〈X(p)〉 on p. Similarly, there exists a C1-unstable
manifold which on p is tangent to 〈X(p)〉 ⊕E+(p). The non-uniform hyperbolicity
implies that E−(p)⊕ 〈X(p)〉 ⊕ E+(p) = TpM .

Since p is a non-singular point, we have that f |W s
loc(p) = f |Wu

loc(p) = f(p). An
argument similar to the one in the proof of Theorem 4.7 gives a contradiction
and we conclude that f |MX

is constant. This implies that the centralizer of X is
trivial. �

4.2.2. The C3 centralizer of a C3 Kinematic expansive vector field. In dimension
three, under enough regularity assumptions, we are also able to obtain triviality,
for a slightly stronger notion of expansiveness.

Definition 4.8. We say that X ∈ X1(M) is Kinematic expansive if for every ε > 0
there exists δ > 0 such that if x, y ∈M satisfy d(Xt(x), Xt(y)) < δ, for every t ∈ R
then there exists 0 < |s| < ε such that y = Xs(x).

The difference between the separating property and Kinematic expansiveness
is that for the later even points on the same orbit must eventually separate. In
[Art16] it is described a vector field on the Möbius band which is separating but is
not Kinematic expansive.

Recall that in the statement of Theorem F, we claim that a C3-kinematic expan-
sive flow in dimension 3 has trivial C3-centralizer. We remark that the Kinematic
expansive condition does not imply that the system admits a countable spectral
decomposition. Hence, we cannot use Theorem C to conclude Theorem F.

The proof of Theorem F is a combination of two results: Sard’s Theorem and
the proposition below.

Proposition 4.9. Let T2 denote the two dimensional torus. If X ∈ X2(T2) and if
Zero(X) = ∅ then X is not Kinematic expansive.

Proof. The argument follows closely some ideas in [Art16]. We present it here for
the sake of completeness.

Assume by contradiction that there exists X ∈ X2(T2) a non-singular kinematic
expansive vector field. In particular it is separating. We fix ε > 0 to be the sepa-
ration constant. Since X is C2 we can apply Denjoy-Schwartz’s Theorem [Sch63]
and we have three possibilities for the dynamics:

(1) each orbit is periodic and X is a suspension of the identity map id: S1 → S1;
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(2) there exist two distinct periodic orbits γs, γu and a non-periodic point x
such that ω(x) = γs and α(x) = γu;

(3) X is a suspension of a C3 diffeomorphism f : S1 → S1, which is topologically
conjugate to an irrational rotation.

We shall prove that each case leads us to a contradiction. In the first case, let
τ : S1 → (0,+∞) be the first return time function. Then, τ(x) is the period of the
orbit of x. As τ is a continuous function on the circle, there exists a maximum
point x0 and arbitrarily close to x0 there are points x1, x2 such that τ(x1) = τ(x2).
This implies that one can choose those points so that

d(Xt(x1), Xt(x2)) ≤ ε, ∀ t ∈ R,

a contradiction.
Let us deal now with case (2). Fix an arbitrarily small number δ > 0.
Take a small segment I transverse to X at a point p ∈ γs and let f : I → I be the

first return map, with τ : I → (0,+∞) the first return time function. There exists a
time T s > 0 such that XT s(x) ∈ I. Consider the fundamental domain Is0 = [f(x), x]
for the dynamics of f and the sequence of image intervals Isn = [fn+1(x), fn(x)],
n ≥ 0. Then, there exists Ns > 0 such that for n ≥ Ns, it holds that Isn ⊂ B(p, δ).
Pick a, b ∈ Is0 arbitrarily close.

Let C > 0 be the Lipschitz constant of τ . Then,∣∣∣∣∣
n∑
`=0

τ(f `(a))−
n∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ C
n∑
`=0

|f `(a)− f `(b)|.

The hight-hand side of above inequality is bounded by
∑
n |Isn| = |I| <∞. There-

fore, the left-hand side converges. Moreover, by continuity of f , if d(a, b) is small

enough then
∑Ns

`=0 |f `(a) − f `(b)| < δ. Since Isn ⊂ B(p, δ) for every n ≥ Ns, we
have

∑∞
`=Ns |f `(a)− f `(b)| < δ. We conclude that∣∣∣∣∣

∞∑
`=0

τ(f `(a))−
∞∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ 2Cδ.

Taking δ small enough, as the flow of X is the suspension of f with return time τ ,
we conclude that d(Xt(a), Xt(b)) < ε, for every t ≥ 0.

Considering a small transverse segment to a point q ∈ γu and arguing similarly
with backwards iteration we obtain two arbitrarily close points a, b whose orbits
are distinct and such that d(Xt(a), Xt(b)) < ε for every t ∈ R, a contradiction.

Finally, let us see that case (3) leads to a contradiction. This is essentially
contained in the proof of Theorem 4.11 from [Art16] with a minor adaptation. We
will sketch the main points of the proof. Let f : S1 → S1 be a C3 diffeomorphism
with irrational rotation number θ, and let τ : S1 → (0,+∞) be a C1 function.
It is well known that the Lebesgue measure is the only ergodic measure for an
irrational rotation. Since f is C3 by the usual Denjoy’s theorem on the circle,
f is conjugated with an irrational rotation, in particular, f has only one ergodic
f -invariant probability measure µ.

Write T :=
∫
S1 τ(x)dµ(x) and let

(
pn
qn

)
n∈N

be the approximation of θ by rational

numbers given by the continued fractions algorithm. From the corollary in [NT13],
which is a version of Denjoy-Koksma inequality (Corollary C in [AK11]), we obtain
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the following

lim
n→+∞

sup
x∈S1

∣∣∣∣∣
qn−1∑
l=0

τ(f l(x))− Tqn

∣∣∣∣∣ = 0.

Following the same calculations in the proof of Theorem 4.11 from [Art16], for any
ε > 0 and for n ∈ N large enough, the points x and fqn(x) are always ε-close for
the future. One can argue similarly for f−1 and find points that are not separated
for the past. Therefore, the flow cannot be Kinematic expansive. �

Remark 4.10. We do not know if there exists a separating suspension of an irrational
rotation. The above proof shows that this is the only possibility for a separating
non-singular vector field on T2.

Proof of Theorem F. Since all the singularities are hyperbolic, by Proposition 2.8
and Theorem 3.4, we have that C3(X) is quasi-trivial. Let f : M → R be a C1, X-
invariant function such that f |MX

is C3. We will prove that f is constant. Suppose
not.

Since there are only finitely many singularities, then as in the proof of Theorem
4.7, if f were not constant, we would have I ⊂ f(M)− f(Zero(X)), for some non-
trivial open interval I ⊂ R. By Sard’s theorem, almost every value in I is a regular
value.

Take a regular value c ∈ I. Hence, Sc := f−1({c}) is a compact surface that
does not contain any singularity of X. Furthermore, since f is X-invariant, we
have that X|Sc is a C3 non-singular vector field on Sc. Up to considering a double
orientation covering, this implies that Sc is a torus, since it is the only orientable
closed surface that admits a non-singular vector field.

Notice that X|Sc
induces a Kinematic expansive flow. However this contradicts

Proposition 4.9. We conclude that f is constant, and this implies that the C3-
centralizer of X is trivial. �

In the higher dimensional case, and at a point of continuity of Ω(·), we also have:

Proposition 4.11. Assume that X ∈ Xd(M) is separating, that all its singularities
are hyperbolic, and that X is a point of continuity of the map Ω(·). Then the Cd-
centralizer of X is trivial.

Remark 4.12. As noted in the proof of Theorem H, the last two assumptions are
satisfied by a residual subset of vector fields in Xd(M).

Proof of Proposition 4.11. Since X is separating and its singularitis are hyperbolic,
it follows from Proposition 2.4 and Theorem A that its C1-centralizer is quasi-
trivial. Take any vector field Y in the Cd-centralizer of X. By the quasi-triviality,
and by Lemma 2.2, there exists a C1 function f : M → R such that f |MX

is of
class Cd and Y = fX. If f is not constant, then as in the proof of Theorem H, by
continuity of Ω(·) at X, and by considering a regular value c ∈ f(M)−f(Zero(X)) of
f |MX

, we reach a contradiction. We conclude that the Cd-centralizer is trivial. �

5. The generic case

Our goal in this section is to prove the result below from which Theorem B
follows immediately.
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Theorem 5.1. There exists a residual subset R ⊂ X1(M) such that if X ∈ R
then X has quasi-trivial C1-centralizer. Furthermore, if X has at most countably
many chain recurrent classes then its C1-centralizer is trivial.

To prove this theorem, we will use a few generic results. In the following state-
ment we summarize all the results we shall need.

Theorem 5.2 ([BC04], [Cro06], [PM82] and [PR83]). There exists a residual
subset R∗ ⊂ X1(M) such that if X ∈ R∗, then the following properties are verified:

(1) Per(X) = Ω(X) = CR(X);
(2) every periodic orbit, or singularity, is hyperbolic;
(3) if C is a chain recurrent class, then there exists a sequence of periodic orbits

(γn)n∈N such that γn → C in the Hausdorff topology.

Item (3) in Theorem 5.2 was proved for diffeomorphisms in [Cro06]. However, the
same statement has been used many times for vector fields (for instance [GY18]). It
is folklore that the same proof given by Crovisier in [Cro06] works for vector fields.
In Appendix B we briefly explain this adaptation.

We first prove that C1-generically the centralizer is collinear. This proof is an
adaptation for flows of Theorem A in [BCW09]. Once we have collinearity, using the
criterion for quasi-triviality given by Theorem 3.4, we conclude that quasi-triviality
of the C1-centralizer is a C1-generic property. At the end of this section we will
show that for a C1-generic vector field X that has at most countably many chain
recurrent classes has trivial C1-centralizer.

5.1. Unbounded normal distortion and its consequences. The following re-
sult is at the core of the C1-generic results obtained in this paper. Its proof is
rather technical and occupies Section 6 below.

Theorem 5.3. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R
then X has unbounded normal distortion.

5.1.1. Collinearity. Once we have established Theorem 5.3, by combining Proposi-
tion 2.7 and some known generic results one obtains the collinearity of the central-
izer of a C1-generic vector field.

Theorem 5.4. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R
then the C1-centralizer of X is collinear.

Proof. The result follows directly from Proposition 2.7 and Theorems 5.2-5.3. �

5.1.2. Quasi-triviality. By Theorem 5.2, we have that C1-generically all the singu-
larities are hyperbolic. As a consequence of Theorem 3.4, since C1-generically the
C1-centralizer is collinear and all the singularities are hyperbolic, we conclude that
C1-generically the C1-centralizer is quasi-trivial. More precisely, we have

Theorem 5.5. Let M be a compact manifold. There exists a residual subset
R1 ⊂ X1(M) such that if X ∈ R1, then any singularity and periodic orbit of X is

hyperbolic, Per(X) = Ω(X) = CR(X), and

C1(X) = {fX : f ∈ I1(X)}, where I1(X) = {f ∈ C1(M,R), X · f ≡ 0}.

Proof. By Theorem 5.4, there exists a residual subset R ⊂ X1(M) whose elements
have collinear C1-centralizer. Moreover, by Theorem 5.2, there exists a residual
subset R∗ ⊂ X1(M) such that for any X ∈ R∗, any singularity and periodic orbit
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of X is hyperbolic, and Per(X) = Ω(X) = CR(X). Then, R1 := R∩R∗ is residual,
and any X ∈ R1 satisfies the hypotheses of Theorem 3.4, which concludes. �

5.1.3. Triviality. We can now conclude the proof of the second part of Theorem 5.1
about C1-generic triviality for systems with a countable number of chain recurrent
classes. To prove that we need the following lemma.

Lemma 5.6. There exists a residual subset RCR ⊂ X1(M) such that if X ∈ RCR
and f ∈ C0(M) is an X-invariant function, then f is constant on chain-recurrent
classes.

Proof. By Theorem 1 in [Cro06], there exists a residual subset RCR ⊂ X1(M) that
verifies the following: if X ∈ RCR and C ⊂ CR(X) is a chain-recurrent class, then
there exists a sequence of periodic orbits (O(pn))n∈N that converges to C in the
Hausdorff topology.

By this property, for any two points x, y ∈ C, there exist two sequences of
points (qn)n∈N and (q′n)n∈N, with qn, q

′
n ∈ O(pn), such that qn → x and q′n → y as

n→ +∞. Let f be a continuous function which is X-invariant. By continuity,

lim
n→+∞

f(qn) = f(x) and lim
n→+∞

f(q′n) = f(y).

However, since f is X-invariant and by our choice of qn and q′n, we have that
f(pn) = f(qn) = f(q′n), which implies that f(x) = f(y). �

Proof of Theorem 5.1. Take R := R1 ∩RCR, where R1 is the residual subset given
by Theorem 5.5. Using the conclusion of Lemma 5.6 and arguments analogous to
the proof of Theorem 4.1 we can easily obtain the conclusion of Theorem 5.1. �

6. Proof that the unbounded normal distortion is C1-generic

In this part, we give the proof of Theorem 5.3 about the C1-genericity of the
unbounded normal distortion property. Since this section is very technical, let us
first summarize the main steps of the proof.

Idea of the proof . In [BCW09] the authors prove that a version of the unbounded
normal distortion holds C1-generically for diffeomorphisms. Their proof can be
divided in two steps. The first part is a key perturbative result made on a linear
cocycle over Z (see Proposition 6.9 below). Then, they reduce the proof to this
linear cocycle scenario, by using some change of coordinates that linearises the
dynamics around an orbit segment of finite length. Both steps are quite delicate
and involve careful control of estimates which appear along the way.

Our strategy is also to reduce the problem to a perturbation of a linear cocycle
over Z, and then apply the result of [BCW09], so that we only need to translate to
the vector field scenario the second step of Bonatti-Crovisier-Wilkinson’s proof. It
is clear that, in order to do that, one needs to discretize the dynamics and so we
study the Poincaré maps between a sequence of transverse sections. The goal is then
apply the perturbation of [BCW09] to the Poincaré maps. The key difficulty we face
with this strategy is that we need to prove that any finite family of perturbations
of a long sequence of Poincaré maps, which verifies some conditions, can be realized
as the corresponding sequence of Poincaré maps for a perturbed vector field.

Apart from that, as in [BCW09], all the perturbations in the reduction procedure
have to be done with precise control on the estimates that appear.
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It is also important to point out that, since we are dealing with wandering points,
the Poincaré map can be defined for a sequence of times arbitrarily large. We also
introduce some change of coordinates to linearize the dynamics given by these maps
for a finite time. However, the space where this can be defined is no longer compact,
since the Poincaré map is only defined over non-singular points. Nevertheless, we
can obtain uniform estimates for the C1-norm of these change of coordinates.

Once we have the realisation lemma, we can adapt the proof of Bonatti-Crovisier-
Wilkinson in [BCW09] and obtain that the unbounded normal distortion property
is C1-generic.

6.1. Notation. We summarize the main notations that will appear below; here,
we let X be a C1 vector field, p be a point in MX , and n ≥ 0 be an integer:

• NX,p: subspace of TpM orthogonal to X(p);
• NX,p: image of NX,p under the exponential map expp;

• (PXp,t)t∈R: linear Poincaré flow, where for t ∈ R, PXp,t is the map induced by
DXt(p) between NX,p and NX,Xt(p);

• PYX,p,n: Poincaré map between NX,p and NX,Xn(p) for the flow generated

by a C1 vector field Y close to X; when X = Y , we drop X in the bottom;

• P̃Xp,n = exp−1
Xn(p) ◦P

X
p,n ◦ expp: lifted Poincaré map;

• IX(p, U, n): set of pairs (y, t) with y in some small neighborhood U of p in
NX,p, and t ≥ 0 a time before the trajectory through y first hits NX,Xn(p);

• UX(p, U, n): image of IX(p, U, n) in phase space; in other words, it is the
tube of flow lines from U to NX,Xn(p);
• ψp,n: linearizing coordinates (to go from lifted to linear Poincaré flow);
• Ψp,n := ψp,n ◦ exp−1

p .

6.2. Linearizing coordinates. Let X ∈ X1(M), and as before, set MX := M −
Zero(X). For p ∈ MX and t ∈ R, for any two submanifolds Σ1 and Σ2 which
are transverse to the orbit segment O := X[0,t](p), each of which intersects O only
at one point, we define the Poincaré map between these two transverse sections
as follows: let p1 := O ∩ Σ1 and p2 := O ∩ Σ2. If a point q ∈ Σ1 is sufficiently
close to p1, then X[−t,2t](q) intersects Σ2 at a unique point PXΣ1,Σ2

(q). The map

q 7→ PXΣ1,Σ2
(q) is called the Poincaré map between Σ1 and Σ2.

This map is a C1-diffeomorphism between a neighborhood of p1 in Σ1 and its
image in Σ2. It also holds that for any vector field Y ∈ X1(M) sufficiently C1-close
to X, the Poincaré map PYΣ1,Σ2

for Y is well defined in some neighborhood of p1 in
Σ1.

Let R > 0 be smaller than the radius of injectivity of M . Using the exponential
map, for each p ∈ MX and r ∈ (0, R), we define the submanifold NX,p(r) :=
expp(NX,p(r)), where NX,p(r) is the ball of center 0 and radius r contained in
NX,p.

Remark 6.1. Considering R to be small enough, for each p ∈ MX and for each
q ∈ NX,p(R) we have that the C1-norm of ΠX

q |TqNX,p(R) is close to 1.

It is a result from [GY18] that for each t ∈ R, there exists a constant
βt = β(X, t) > 0 such that for any point p ∈ MX , the Poincaré map is a C1

diffeomorphism from NX,p(βt‖X(p)‖) to its image inside NX,Xt(p)(R). We denote

this map by PXp,t. For a fixed δ > 0, we can choose β ∈ (0, β1) such that for any
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p ∈MX and any q ∈ NX,p(β‖X(p)‖), it holds

‖DPXp,1(q)−DPXp,1(p)‖ < δ. (6.1)

The existence of βt and β above is guaranteed by Lemmas 2.2 and 2.3 in [GY18].
It follows from the proof that these constants can be taken uniformly in a suffi-
ciently small C1-neighborhood of X. By our choices of transversals, we remark
that DPXp,1(p) = PXp,1, where PXp,t is the linear Poincaré flow (see (2.2)).

Definition 6.2. For any C > 1 we say that a vector field X ∈ X1(M) is bounded by
C if it holds

(a) sup
x∈M
|X(p)| < C;

(b) supp∈M ‖DX(p)‖ < C;

(c) C−1 < inf
x∈M

inf
t∈[−1,1]

‖(DXt(x))−1‖−1 ≤ sup
x∈M

sup
t∈[−1,1]

‖DXt(x)‖ < C;

(d) C−1 < inf
p∈MX

inf
t∈[−1,1]

‖(PXp,t)−1‖−1 ≤ sup
p∈MX

sup
t∈[−1,1]

‖PXp,t‖ < C;

(e) there exists β > 0 small, such that

C−1 < ‖(DPXp,1(q))−1‖−1 ≤ ‖DPXp,1(q)‖ < C, for any q ∈ NX,p(β‖X(p)‖).

Next lemma justifies that for any C1-vector field there is a constant C > 1 such
that this vector field is bounded by C.

Lemma 6.3. Let X ∈ X1(M) be a vector field such that MX 6= ∅. There exists
C > 1 such that X is bounded by C. Moreover, this constant can be taken uniform
in a sufficiently small neighborhood of X.

Proof. Since the set [−1, 1]×M is compact, the existence of a constant C > 1 that
verifies Conditions (a), (b) and (c) in Definition 6.2 is immediate.

Let us justify Condition (d). Recall that on MX the linear Poincaré flow is
defined by PXp,t = ΠX

Xt(p)
◦ DXt(p)|NX,p

. By Condition (c) and since ‖PXp,t‖ ≤
‖DXt(p)‖ we conclude the upper bound in Condition (d). Since MX is not compact,
the possible problem that could appear for the lower bound in Condition (d) is if
the angle between the hyperplane DXt(p)NX,p and X(Xt(p)) is not bounded from
below for t ∈ [−1, 1] and p ∈MX .

Let SM be the unit tangent bundle of M and consider the application F : SM ×
R→ R defined by

F (p, v, t) = ](DXt(p) · v⊥p , DXt(p) · v), (6.2)

where v⊥p is the d−1-dimensional subspace in TpM which is orthogonal to the vector

v, and ](DXt(p) · v⊥p , DXt(p) · v) is the angle between the subspace DXt(p) · v⊥p
and the vector DXt(p) · v.

By the continuity of DXt, we have that the map F is also continuous. Moreover,
for each p ∈ M and t ∈ R the map DXt(p) is an isomorphism between TpM and
TXt(p)M , therefore, F (p, v, t) is positive for any (p, v) ∈ SM and t ∈ R. Define
γ := inf{F (p, v, t) : (p, v, t) ∈ SM × [−1, 1]}, and observe that since SM × [−1, 1]
is compact and F is continuous, γ is strictly positive.
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Note that if p ∈ MX , we have that F (p, X(p)
‖X(p)‖ , t) = ](DXt(p) ·X⊥p ,

X(Xt(p))
‖X(p)‖ ).

Thus, for (p, t) ∈ MX × [−1, 1], we obtain F (p, X(p)
‖X(p)‖ , t) > γ. This together with

the lower bound in Condition (c) gives the uniform lower bound in Condition (d).
Condition (e) follows easily from Condition (d) and (6.1) above. We conclude

that for any vector field X ∈ X1(M), there is a constant C > 1 such that X is
bounded by C, and the same is true for every Y close enough to X. �

Let X ∈ X1(M) be a vector field bounded by C > 1. Using the exponential
map, for p ∈MX , we consider the lifted Poincaré map

P̃Xp,1 = exp−1
X1(p) ◦P

X
p,1 ◦ expp,

which goes from NX,p(β‖X(p)‖) to NX,X1(p)(R). The advantage of using the lifted
Poincaré map is that we can perform perturbations using canonical coordinates.
Observe that

‖X(X1(p))‖ > C−1‖X(p)‖. (6.3)

By (6.3) and the last item in Definition 6.2, for any n ∈ N, the map PXp,n is

well defined on NX,p
(
β
Cn ‖X(p)‖

)
, while the lifted map P̃Xp,n is well defined on

V Xp,n := NX,p
(
β
Cn ‖X(p)‖

)
.

For each n ∈ N and p ∈ MX , we define the change of coordinates ψp,n =

PXX−n(p),n ◦ (P̃XX−n(p),n)−1, which is a C1 diffeomorphism from P̃Xp,n(V XX−n(p),n) to

PXX−n(p),n(V XX−n(p),n) ⊂ NX,p. Observe that ψp,0 = id. The sequence (ψXj(p),j)j∈N
verifies the following equality:

ψXn(p),n ◦ P̃Xp,n = PXp,n ◦ ψp,0,

which holds on V Xp,n. In other words, this change of coordinates linearizes the

dynamics of P̃Xp,n:

VX−1(p),n+1

ψXn+1(p),n+1

��

P̃X
X−1(p),1

// Vp,n

ψXn(p),n

��

P̃X
p,n // NXn(p)(R)

ıp,n

��
NX−1(p)

PX
X−1(p),1

// Np
PX

p,n

// NXn(p)

Change of coordinates

where ıp,n : NXn(p)(R)→ NXn(p) stands for the inclusion map.

For all y ∈ NX,p( β
Cn ‖X(p)‖), we define the hitting time τXp,n(y) as the first posi-

tive time where the trajectory starting at y hits the transverse section NX,Xn(p)(R):

τXp,n(y) := inf{t ≥ 0 : Xt(y) ∈ NX,Xn(p)(R)}.

Notation. Let p ∈MX and n ∈ N. Suppose that for Y ∈ X1(M) the submani-

folds NX,p
(
β
Cn ‖X(p)‖

)
and NX,Xn(p)(R) are transverse to Y , and that the Poincaré

map for Y between these transverse sections is well defined on NX,p
(
β
Cn ‖X(p)‖

)
.

Then we denote this Poincaré map for Y by PYX,p,n. Accordingly, we denote its
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lift by P̃YX,p,n and its hitting time by τYX,p,n. We also extend those notations for

non-integer times: given an integer n ≥ 1 and t ∈ [n − 1, n], we let PYX,p,t be the

Poincaré map between the transversals NX,p
(
β
Cn ‖X(p)‖

)
and NX,Xt(p)(R).

In the next definition we introduce the type of perturbations of the Poincaré
map that we will consider in the sequel. Observe that, in this definition, we are
perturbing the nonlinear transverse dynamics of the flow.

Definition 6.4. For each δ > 0 and given an open set U ⊂ NX,p(β‖X(p)‖), a
C1 map g : NX,p(β‖X(p)‖) → NX,X1(p)(R) is called a δ-perturbation of PXp,1 with
support in U if the following holds:

• dC1(PXp,1, g) < δ;

• the image of g coincides with the image of PXp,1;

• the map g is a C1 diffeomorphism into its image;
• the support of (PXp,1)−1 ◦ g is contained in U .

For any n ∈ N and any U ⊂ NX,p
(
β
Cn ‖X(p)‖

)
, we define

IX(p, U, n) := {(y, t) : y ∈ U, t ∈ [0, τXp,n(y)]}, (6.4)

and we let UX(p, U, n) be the image of IX(p, U, n) under the map (y, t) 7→ Xt(y):

UX(p, U, n) :=
⋃
y∈U

⋃
t∈[0,τX

p,n(y)]

Xt(y). (6.5)

We will need the following lemma, which translates the fact that Xt → Id when
|t| → 0 in terms of the linear Poincaré map and the hitting time.

Lemma 6.5. Let X ∈ X1(M). There exists a small constant α = α(X) > 0

such that for any t ∈ [−α, α] and p ∈ MX , it holds that |detPXp,t − 1| < log 2
2 .

Furthermore, take C > 1 to be a constant such that X is bounded by C. Then, we
can fix β > 0 small such that for any p ∈ MX and q ∈ NX,p

(
β
Cn ‖X(p)‖

)
, it holds

that τXp,n(q) ∈ [n− α, n+ α].

Proof. First observe that for t small, DXt is uniformly close to DX0 = id for
any point in M . Using the continuity of the function F defined in (6.2), for any
ε > 0, there exists α1 > 0 such that for any t ∈ [−α1, α1] we have the following:
for any p ∈ MX , the angle between DXt(p)NX,p and NX,Xt(p) is smaller than ε.

Since detPXp,t = det ΠX
Xt(p)

|DXt(p)NX,p
.detDXt(p)|NX,p

, from these two observa-

tions above, by fixing α small enough we conclude the first part of Lemma 6.5.
Let us now prove the second part of the lemma. We may take β much smaller

than α such that βC � 10αC and βC � R. This implies that for any p ∈MX we

have that B(p, β‖X(p)‖) ⊂
⋃

t∈[−α,α]

Xt(NX,p(R)). Observe that for any n ∈ N, if

q ∈ NX,p( β
Cn ‖X(p)‖), then we have

d(Xn(p), Xn(q)) ≤ Cnd(p, q) ≤ β‖X(p)‖.

The conclusion then follows. �

Remark 6.6. From now on given X we will always assume that α and β verify the
conclusion of Lemma 6.5.

33



6.3. A realization lemma. We state and prove below a lemma that allows us to
realize a non-linear perturbation of the linear Poincaré flow as the lifted Poincaré
map of a vector field nearby. This result is one of the key differences between our
work and the diffeomorphism result of [BCW09]. Moreover, it provides an efficient
of converting the problem of perturbing a vector field into giving a sequence of
perturbations of a discrete dynamics.

Lemma 6.7. For any C, ε > 0, there exists δ = δ(C, ε) > 0 that verifies the
following. For any vector field X ∈ X1(M) that is bounded by C, any 0 < δ1 < δ
and any integer n ∈ N, there is ρ = ρ(X, ε, δ1, n) > 0 with the following property.

For any p ∈ MX and U ⊂ NX,p(ρ‖X(p)‖) such that the map (y, t) 7→ Xt(y) is
injective restricted to the set IX(p, U, n), then the following holds:

(1) Set Ũ := exp−1
p (U). Then for every i ∈ {0, . . . , n}, the map ΨXi(p),i :=

ψXi(p),i ◦ exp−1
Xi(p)

induces a C1 diffeomorphism from PXp,i(U) onto PXp,i(Ũ)

such that

max{‖DΨXi(p),i‖, ‖DΨ−1
Xi(p),i

‖, |detDΨXi(p),i|, |detDΨ−1
Xi(p),i

|} < 2. (6.6)

(2) For i ∈ {1, . . . , n}, let g̃i : NX,Xi−1(p) → NX,Xi(p) be any C1 diffeomorphism

such that the support of (PXXi−1(p),1)−1 ◦ g̃i is contained in PXp,i−1(Ũ), and

which satisfies dC1(g̃i, P
X
Xi−1(p),1) < δ1. Let gi be the map defined as follows:

• gi(y) := PXXi−1(p),1(y), if y /∈ PXp,i−1(U);

• gi(y) := Ψ−1
Xi(p),i

◦ g̃i ◦ΨXi−1(p),i−1(y), if y ∈ PXp,i−1(U).

Then the map gi is a δ-perturbation of PXXi−1(p),1 with support in PXp,i−1(U).

(3) There exists Y ∈ X1(M) such that dC1(X,Y ) < ε, and the Poincaré map
PYX,Xi(p),1

for the vector field Y between NXi−1(p)(ρ‖X(p)‖) and NXi(p)(R)

is well defined and is given by gi, for each i ∈ {1, . . . , n}. Moreover, the
support of X − Y is contained in UX(p, U, n) and the image of τYX,p,n is

contained in [n− α, n+ α].

Before proving this lemma, let us say a few words on Items (2) and (3) in the
statement. Item (2) states that we can obtain perturbations of the Poincaré map by
perturbing its lift, with precise estimates on the size of each of these perturbations
we consider. Observe that this only gives C1 diffeomorphisms between certain
transverse sections. Item (3) states that any such perturbation can be realized
as the Poincaré map of a vector field C1-close to X, with precise estimates on its
distance to X. Furthermore, the hitting time of Y has the same image as the hitting
time of X.

This lemma will be very important in our proof. It will allow us to reduce the
proof of the theorem to the perturbation of a linear cocycle over Z. This is done
after several steps and adaptations. One important remark is that we will find some
number n such that throughout our proof, the perturbations will happen in pieces
of orbit of “size” [0, n]. So Lemma 6.7 will give us the uniformity needed to realize
the pertubations of the linear cocycles as the Poincaré map of a vector field.

Proof. We will obtain δ later, as consequence of a finite number of inequalities. In
the following, we always assume that 0 < ρ ≤ β

Cn . By the previous discussion, this

ensures that PXp,n is well defined on NX,p
(
ρ‖X(p)‖

)
, for all p ∈MX .
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For Item (1), first observe that

DΨXi(p),i = PXp,i ◦D(P̃Xp,i)−1 ◦D exp−1
Xi(p)

. (6.7)

Notice that since i ∈ {0, · · · , n}, for any l > 0 one may fix ρ > 0 sufficiently
small such that for any p ∈ MX we have ρ‖X(Xi(p))‖ < l. In other words, the
submanifolds NX,Xi(p)(C

iρ‖X(x)‖) can be made uniformly arbitrarily small. In
particular, we obtain that for any γ > 0, for ρ sufficiently small, for any p ∈ MX

the map D exp−1
Xi(p)

is γ-C1-close to the identity in the ball of center Xi(p) and

radius Ciρ‖X(p)‖. Hence, to control DΨXi(p),i we are left to control the term

PXp,i ◦D(P̃Xp,i)−1. This will follow from the following points:

• It holds

C−n < inf
p∈MX , t∈[−n,n]

‖(PXp,t)−1‖−1 ≤ sup
p∈MX , t∈[−n,n]

‖PXp,t‖ < Cn, (6.8)

and by (6.1), we have similar estimates for the Poincaré maps PXp,t, uni-
formly in p ∈MX and t ∈ [−n, n].

• In order to have a uniform control on the norm of DΨXi(p),i and its inverse,
the difficulty to overcome is that the set MX where p ranges is not compact.

Let us note that by (6.7), it is sufficient to control the map PXp,i◦D((P̃Xp,i)−1);

moreover, by choosing ρ > 0 sufficiently small, the linear maps A = PXp,i and

B = DP̃Xp,i from Np to NXi(p) can be made arbitrarily close to each other.

The point is thus to control the product AB−1 knowing that the norm of
the difference A − B is small. The idea for that is to find an extension in
order to view A and B as two maps between the fibers at p and q := Xi(p)
of a compact bundle. We consider the following commutative diagram:

Grd−1
p M

DpXi // Grd−1
q M

SpM

ıp

OO

DpXi // SqM

ıq

OO

Np

p

OO

PX
p,i // Nq

q

OO

where SM , Grd−1M respectively denote the unit tangent bundle and the
bundle of (d − 1)-Grassmannians, ıp is the natural inclusion from SpM to

Grd−1
p M , and p denotes the map which associates to the hyperplane Np

the unit normal vector to it (i.e., the unit vector tangent to the flow). Here,
by a slight abuse of notation, we denote by DXi the natural action of the
differential of the flow both on SM and Grd−1M . By composition with the

map ıp ◦ p, we can see PXp,i and DP̃Xp,i as two maps between the fibers at p

and q of Grd−1M . Besides, as Grd−1M is compact, for any C > 0, and for
any ε > 0, there exists δ > 0 such that for any p, q ∈M ,

∀A : Grd−1
p M → Grd−1

q M, ‖A‖ < C,

∀B : Grd−1
p M → Grd−1

q M, ‖B‖ < C,
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it holds:

‖A−B‖ < δ ⇒ ‖AB−1 − id‖ < ε.

From this fact, and our assumption that the vector field X is bounded by

C, we get the sought control on PXp,i ◦D((P̃Xp,i)−1) over all p ∈MX .

In particular, we obtain a uniform control of ΨXi(p),i for p ∈MX and i ∈ {0, . . . , n}
even though the space MX is not compact.

By Definition 6.4, the proof of (2) follows easily from the first point. Indeed,
given i ∈ {1, . . . , n} and p ∈MX , we use the maps ΨXi−1(p),i−1 and ΨXi(p),i to con-

jugate PXXi−1(p),1 to the linear Poincaré map PXXi−1(p),1. By the previous discussion,

for ρ > 0 small enough, the maps ΨXi−1(p),i−1 and ΨXi(p),i are arbitrarily C1-close

to exp−1
Xi−1(p) and exp−1

Xi(p)
respectively. The estimate on the C1 distance between

gi and PXXi−1(p),1 follows, since we assume dC1(g̃i, P
X
Xi−1(p),1) < δ1, and δ1 < δ.

The proof of Point (3) follows from arguments similar to those presented in
Pugh-Robinson [PR83] (see in particular Lemma 6.5 in that paper).

More precisely, let i ∈ {1, . . . , n}, and let g̃i : NXi−1(p) → NXi(p) be a C1 dif-

feomorphism satisfying the assumptions of Point (2). We pull back g̃i to a C1

diffeomorphism ĝi : NXi−1(p) → NXi−1(p) by letting ĝi := PXXi(p),−1 ◦ g̃i. By as-

sumption, the support of ĝi is contained in PXp,i−1(Ũ), with Ũ := exp−1
p (U) and

U ⊂ NX,p(ρ‖X(p)‖), hence by (6.8), we get

dC0(ĝi, id) ≤ 2Cρmax
p∈M
‖X(p)‖. (6.9)

Then for all t ∈ [i − 1, i], we define a map g̃t : NXi−1(p) → NXt(p) as g̃t :=

PXXi−1(p),t−i+1 ◦ ĝi. By the above estimate, and by (6.8), we deduce that

dC0(g̃t, P
X
Xi−1(p),t−i+1) ≤ 2C2ρmax

p∈M
‖X(p)‖, ∀ t ∈ [i− 1, i]. (6.10)

Moreover, for any t ∈ [i−1, i], we have Dg̃t = PXXi−1(p),t−i+1 ·Dĝi = PXXi−1(p),t−i+1◦
PXXi(p),−1 ·Dg̃i. Since dC1(g̃i, P

X
Xi−1(p),1) < δ1, we obtain

dC1(g̃t, P
X
Xi−1(p),t−i+1) ≤ C2δ1, ∀ t ∈ [i− 1, i]. (6.11)

Let us fix a C∞ bump function χ : R → [0, 1] which is 0 near 0 and 1 near 1.
Fix i ∈ {1, . . . , n} and set χi−1(·) := χ(· − i + 1). For k ∈ {0, . . . , n}, we also let

Np,k := NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. Then for any t ∈ [i − 1, i], we let h

(i)
t : Np,i−1 →

Np,i be the map defined as

• h(i)
t (y) := PXXi−1(p),t−i+1(y), if y /∈ PXp,i−1(U);

• h(i)
t (y) := Ψ−1

Xt(p),t
◦
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
◦

ΨXi−1(p),i−1(y), if y ∈ PXp,i−1(U),

where we have extended the previous notation by setting

ΨXt(p),t := PXp,t ◦ P̃XXt(p),−t ◦ exp−1
Xt(p)

.
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Figure 4. Interpolation between the initial Poincaré map and gi.

In particular, we note that for t = i − 1, we have h
(i)
t = h

(i)
i−1 = id, while for

t = i, h
(i)
t = h

(i)
i coincides with the map gi defined in Item (2).

By (6.10), for all t ∈ [i− 1, i], we have

dC0

(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1, P

X
Xi−1(p),t−i+1

)
≤ 2C2ρmax

p∈M
‖X(p)‖.

Since PXXi−1(p),t−i+1 = Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ ΨXi−1(p),i−1, by the definition of

h
(i)
t and by (6.6), we can thus make the C0 distance between h

(i)
t and PXXi−1(p),t−i+1

arbitrarily small, provided that ρ > 0 is taken small enough.
For any t ∈ [i− 1, i], we have

D
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
= DPXXi−1(p),t−i+1 + χi−1(t)

(
Dg̃t − PXXi−1(p),t−i+1

)
.

By (6.8) and (6.11), we thus get

dC1(h
(i)
t ,PXXi−1(p),t−i+1) ≤ 4C2δ1. (6.12)

For any t ∈ [i− 1, i], we also have:

∂t

(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
− ∂tPXXi−1(p),t−i+1

= χ′i−1(t)
(
g̃t − PXXi−1(p),t−i+1

)
+ χi−1(t)∂t

(
g̃t − PXXi−1(p),t−i+1

)
= χ′i−1(t)PXXi−1(p),t−i+1 ◦

(
ĝi − id

)
+ χi−1(t)∂tP

X
Xi−1(p),t−i+1 ◦

(
ĝi − id

)
.
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By (6.6), (6.8) and (6.9), we deduce that

max
t∈[i−1,i]

max
y∈U
|∂tPXXi−1(p),t−i+1(y)− ∂th(i)

t (y)|

≤ 8C max

(
C, sup

t∈[0,1]

‖∂tPXXi−1(p),t‖

)
‖χ‖C1ρmax

p∈M
‖X(p)‖. (6.13)

Recall that for k ∈ {0, . . . , n}, we denote Np,k := NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. As in

(6.4), given a set V ⊂ Np,0, we set

IX(p, V, n) :=
{

(y, t) : y ∈ V, t ∈ [0, τXp,n(y)]
}
.

Let us assume that U ⊂ NX,p(ρ‖X(p)‖) is such that the map (y, t) 7→ Xt(y) is
injective on the set IX(p, U, n). For ρ > 0 small, the hitting time function τXp,n
is uniformly close to n on NX,p(ρ‖X(p)‖), and the C1 distance between the maps
(y, t) 7→ PXp,t(y) and (y, t) 7→ Xt(y) restricted to IX(p,NX,p(ρ‖X(p)‖), n) is small.

Given i ∈ {1, . . . , n}, let us consider the map h(i) : (y, t) 7→ h
(i)
t (y) defined on

Np,i−1 × [i − 1, i] as above. By (6.12) and (6.13), and since 0 < δ1 < δ, the maps

Np,i−1 × [i− 1, i] 3 (y, t) 7→ PXXi−1(p),t−i+1(y) and h(i) can be made arbitrarily C1-

close by taking δ > 0 small enough. For δ > 0 sufficiently small, we deduce that the
map h(i) is locally injective on the interior of PXp,i−1(U)×[i−1, i]. Besides, as we have

seen, h
(i)
i−1|Np,i−1

= id|Np,i−1
, while h

(i)
i |Np,i−1

= gi|Np,i−1
is a C1 diffeomorphism.

Now, we define a map H on Np,0 × [0, n] by setting

H(y, t) := h
(i)
t ◦ gi−1 ◦ gi−2 ◦ · · · ◦ g1(y), (6.14)

∀ y ∈ Np,0, ∀ t ∈ [i− 1, i], ∀ i ∈ {1, . . . , n}.
By what precedes, the map H is locally injective on the interior of the set U× [0, n].
Moreover, ∂ (U × [0, n]) = (U ×{0})∪ (U ×{n})∪ (∂U × [0, n]). On the one hand,
we have H(·, 0)|U = id|U , and by construction, the map H(·, n)|U coincides with
gn ◦ gn−1 ◦ · · · ◦ g1|U , hence it is a C1 diffeomorphism from U to PXp,n(U) ⊂ Np,n.
On the other hand, by Point (2), each diffeomorphism gi is a δ2-perturbation of
PXXi−1(p),1 with support in PXp,i−1(U). Therefore the restriction of H to the set

∂U × [0, n] coincides with the restriction of the map (y, t) 7→ PXp,t(y). In particular,
we deduce that the restriction H|∂(U×[0,n]) of H to the boundary of U × [0, n] is
injective. From Lemma 6.5 in Pugh-Robinson [PR83], we conclude that H embeds
U × [0, n] into the set UX(p, U, n) introduced in (6.5).

In the same way as before, for any y ∈ NX,p(ρ‖X(p)‖) and t ∈ [0, n], we set

τXp,t(y) := min{s ≥ 0 : Xs(y) ∈ NX,Xt(p)(R)}.

By definition, PXp,t(y) = XτX
p,t(y)(y), for any (y, t) ∈ NX,p(ρ‖X(p)‖)× [0, n], thus

X(PXp,t(y)) = (∂tτ
X
p,t(y))−1∂tPXp,t(y). (6.15)

Moreover, τXp,·(p) = id, and the map (y, t) 7→ τXp,t(y) is C1 on NX,p(ρ‖X(p)‖)×[0, n],
hence for ρ > 0 sufficiently small, we have

1

2
< |∂tτXp,t(y)| < 2, ∀ p ∈MX , y ∈ NX,p(ρ‖X(p)‖), t ∈ [0, n]. (6.16)

As we have noted above, on the complement of U × [0, n], the maps H and
(y, t) 7→ PXp,t(y) coincide. We thus define a vector field Y ∈ X1(M) on M by setting
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• Y (q) := X(q), if q ∈M − UX(p, U, n);
• Y (q) := (∂t|t=t0τXp,t(y))−1∂t|t=t0H(y0, t), if q ∈ UX(p, U, n), where

(y0, t0) := H−1(q) ∈ U × [0, n].

For each i ∈ {1, . . . , n}, by the definition of H in (6.14) and since h
(i)
i = gi, it

follows that the Poincaré map PYX,Xi−1(p),1 for the vector field Y between Np,i−1

and Np,i is given by gi. By definition, the support of X − Y is contained in
UX(p, U, n). Moreover, given any point q = PXp,t(y) = H(y′, t) ∈ UX(p, U, n), say

(y, t) ∈ U × [i − 1, i], letting z := PXp,i−1(y) and z′ := gi−1 ◦ gi−2 ◦ · · · ◦ g1(y′), we
obtain

PXp,t(y) = PXXi−1(p),t−i+1(z)

= Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ΨXi−1(p),i−1(z);

H(y′, t) = h
(i)
t (z′)

= Ψ−1
Xt(p),t

◦
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
◦ΨXi−1(p),i−1(z′)

= Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

Set

w := ΨXi−1(p),i−1(z) = (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

We deduce that

∂tPXp,t(y) = ∂t

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
(w),

∂tH(y′, t) = ∂t

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
(w) +Dw

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
· ∂t
(
(χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′)

)
= ∂tPXp,t(y) + χ′i−1(t)DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PXXi−1(p),t−i+1◦

◦ (ĝi − id)
(
ΨXi−1(p),i−1(z′)

)
,

and

Y (q)−X(q) =

χ′i−1(t)

∂tτXp,t(y)
DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ (ĝi − id)
(
ΨXi−1(p),i−1(z′)

)
,

where the last equality follows from (6.15) and the definition of Y . In particular,
the difference between the vector fields X and Y is essentially controlled by the C0

distance between ĝi and id. More precisely, by (6.6), (6.8), (6.9), and (6.16), we
deduce that

|X(q)− Y (q)| ≤ 8‖χ‖C1C2ρmax
p∈M
‖X(p)‖,

and we argue similarly for the derivatives. Therefore, by taking ρ sufficiently small,
we can ensure that dC1(X,Y ) < ε, which concludes the proof of point (3), and
then, of Lemma 6.7. �

6.4. Producing unbounded normal distortion by perturbation. We are now
in position to prove the main perturbation result (Proposition 6.10 below) that
will allow us to obtain unbounded normal distortion generically. The key tool
behind this is a perturbation result for linear cocycles taken from [BCW09]. The
next proposition roughly says that for any C1 vector field X, any compact subset
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∆ ⊂ MX of a section transverse to the flow, any x ∈ MX whose orbit is far from
∆, we can produce another vector field Y that is C1-close to X and such that for
any point y ∈ ∆, we see a large distortion between the images of x and y under
the linear Poincaré flow of Y . Moreover, Y can be made arbitrarily C0-close to X
if the support of the perturbation is chosen large enough.

Proposition 6.8. For any d ≥ 2, C > 1, K, ε > 0, let δ = δ(C, ε) be the constant
given by Lemma 6.7. There exists n0 = n0(d,C,K, ε) ∈ N with the following
property.

For any d-dimensional manifold M , any vector field X ∈ X1(M) which is
bounded by C, there exists ρ0 = ρ0(d,C,K, ε, n0) > 0 such that for any η > 0,
any compact set ∆ ⊂MX and x, p ∈MX satisfying:

(a) there exists an open set U inside NX,p(ρ0‖X(p)‖), such that ∆ ⊂ U ;

(b) the map (y, t) 7→ Xt(y) is injective on IX(p, U, n0) (see (6.4));

(c) orbX(x) ∩ U = ∅,
there exists a vector field Y ∈ X1(M) such that

(1) the support of X − Y is contained in UX(p, U, n0) (see (6.5));

(2) dC1(X,Y ) < ε;

(3) for any i ∈ {0, . . . , n0 − 1}, it is verified dC1(PXXi(p),1
,PYX,Xi(p),1

) < δ,

where PYX,Xi(p),1
is the Poincaré map between NX,Xi(p)(β‖X(Xi(p))‖) and

NX,Xi+1(p)(R);

(4) dC0(PXXi(p),t
,PYX,Xi(p),t

) < η, for all t ∈ [0, 1];

(5) for all y ∈ ∆, there exists an integer n ∈ {1, . . . , n0} such that

| log detPYx,n − log detPYy,n| > K.

Proposition 6.8 is the analogue for flows of Proposition 8 in [BCW09]. Using
Lemma 6.7, we will reduce the proof of this proposition to a discrete scenario
where we can apply the following proposition from [BCW09]. This result tells us

that given a linear cocycle f̃ acting on Z × Rd for some integer d ≥ 1, two sets
∆ ⊂ U ⊂ Rd, with ∆ compact, we can perturb f̃ into a new cocycle that is C1-
close to it, coincides with f̃ outside of the tube obtained by flowing U for a finite
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time, and such that for any point y ∈ ∆, we can find an iterate of y for which the
difference between the Jacobians of the cocycles is very large. Moreover, we can
keep the C0-distance between the two cocycles arbitrarily small provided that the
tube is long enough.

Proposition 6.9 (Proposition 9 in [BCW09]). For any d ≥ 1, and any C,K, ε > 0,
there exists n1 = n1(d,C,K, ε) ≥ 1 with the following property.

Consider any sequence (Ai) ∈ GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

cocycle f̃ on Z×Rd defined by f̃(i, v) := (i+1, Aiv). Then, for any open set U ⊂ Rd,
for any compact set ∆ ⊂ U and any η > 0, there exists a diffeomorphism g̃ of Z×Rd
such that:

• dC1(f̃ , g̃) < ε;

• dC0(f̃ , g̃) < η;

• f̃ = g̃ on the complement of
⋃2n1−1
i=0 f̃ i({0} × U);

• for all y ∈ {0} ×∆, there exists n ∈ {1, . . . , n1} such that

| log detDf̃n(y)− log detDg̃n(y)| > K.

Below we prove Proposition 6.8 assuming Proposition 6.9. The idea of the proof
is that we first perturb the discretized linearized dynamics using Proposition 6.9,
then we relate this perturbation with the dynamics of a vector field by using the
realization lemma (Lemma 6.7).

Proof of Proposition 6.8 from Proposition 6.9. Fix any δ1 ∈ (0, δ) and K0 > 2K +
10 log 2. Let n1 = n1(d− 1, C,K0, δ1) be the constant given by Proposition 6.9 for
d − 1, C,K0, ε and let n0 = 2n1. Let X ∈ X1(M) be a vector field bounded by
C and let ρ > 0 be the constant given by Lemma 6.7 for C, ε, δ1, n0 and X. Fix
ρ0 ∈ (0, ρ

Cn0
).

Let ∆ ⊂ MX , x, p ∈ MX and η > 0 be such that conditions (a), (b) and (c) in
Proposition 6.8 are verified. Let U ⊂ NX,p(ρ0‖X(x)‖) be the open set given by
condition (a). Consider OX1(p) = {. . . , X−1(p), p,X1(p), . . . } and observe that this
set is naturally identified with Z. We consider the normal bundle, with respect to
X, over OX1

(p) and the linear cocycle defined as follows: for i ∈ Z and v ∈ NX,Xi(p)

set f̃(i, v) := (i+ 1, PXXi(p),1
v).

Recall that Ũ = exp−1
p (U). By Item (1) in Lemma 6.7, for any i ∈ {0, . . . , n0},

we obtain C1 diffeomorphisms Ψi := ΨXi(p),i : PXp,i(U)→ PXp,i(Ũ), such that for any

q ∈ PXp,i(U) it holds that

PXXi(p),1
(Ψi(q)) = Ψi+1(PXXi(p),1

(q)). (6.17)

Write Ψ:
⋃n0

i=0 PXp,i(U)→
⋃n0

i=0 P
X
p,i(Ũ) as the C1 diffeomorphism which is equal to

Ψi on PXp,i.
For the cocycle f̃ , we apply Proposition 6.9 and obtain a δ1-perturbation g̃ of f̃

supported on
⋃n0−1
i=0 f̃ i({0} × Ũ), such that for every q ∈ Ψ0(∆), it holds:

• dC0(f̃ , g̃) < η
2 ;

• f̃ = g̃ on the complement of
⋃n0−1
i=0 f̃ i({0} × Ũ);

• for every q ∈ Ψ0(∆), there exists n ∈ {1, . . . , n0} such that

| log detDf̃n(q)− log detDg̃n(q)| > K0.
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For each i ∈ {0, . . . , n0 − 1}, let g̃i := g|{i}×NX,Xi(p)
and observe that

dC1(g̃i, P
X
Xi(p),1

) < δ1. By Item (2) in Lemma 6.7, we obtain a δ-pertubation gi

of PXXi(p),1
. By (6.6) and (6.17), we have

dC0(gi,PXXi(p),1
) < 2dC0(g̃i, P

X
Xi(p),1

) < η.

Moreover, by the estimates in (6.6), we conclude that for any q ∈ ∆, there exists
n ∈ {1, . . . , n0 − 1} such that

| log detDPXp,n(q)− log detD(gn)(q)| > K0 − 4 log 2, (6.18)

where gn(q) := gn ◦ · · · ◦ g1(q).
Recall that for n ∈ {0, . . . , n0− 1}, the maps PXp,n and PXp,n are conjugated on ∆

by Ψ. By (6.6), we obtain that for any q ∈ ∆, it holds

| log detDPXp,n(q)− log detPXp,n| ≤ 2 log 2. (6.19)

Suppose there exists n ∈ {0, . . . , n0 − 1} such that | log detPnp − log detPnx | >
K + 3 log 2. By (6.19) and Remark 6.1, for any q ∈ ∆ it holds that∣∣∣log detPXq,τX

p,n(q) − log detPXx,n

∣∣∣ > K + log 2.

By Lemma 6.5 and item 3 of Lemma 6.7, we conclude that

| log detPXq,n − log detPXx,n| > K.

In this case we do not make any perturbation. Suppose that for every n ∈
{0, . . . , n0 − 1} and every q ∈ ∆ we have

| log detPXq,n − log detPXx,n| ≤ K + 3 log 2.

Consider the maps g1, . . . , gn0
as it was explained above (obtained using Proposition

6.9). Applying Lemma 6.7, we obtain a C1 vector field Y that verifies the following
properties:

• dC1(X,Y ) < ε;
• the support of X − Y is contained in UX(p, U, n0);
• for each i ∈ {1, . . . , n0}, we have that PYX,Xi(p),1

= gi.

By (6.18) and (6.19), we conclude that for each q ∈ ∆, there exists n ∈ {1, . . . , n0}
such that∣∣∣∣∣log

(
detPYx,n
detPYq,n

)∣∣∣∣∣ ≥
∣∣∣∣∣log

(
detDPXp,n(q)

detPYq,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPXx,n

detDPXp,n(q)

)∣∣∣∣∣
≥

∣∣∣∣∣log

(
detDPXp,n(q)

detDgn(q)

)∣∣∣∣∣−
∣∣∣∣log

(
detDgn(q)

detPYq,n

)∣∣∣∣−
−

∣∣∣∣∣log

(
detPXx,n
detPXq,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPXq,n

detDPXp,n(q)

)∣∣∣∣∣
> K0 − log 2−K − 4 log 2− log 2 > K.

This concludes the proof of Proposition 6.8. �

The following proposition is the version for flows of Proposition 7 in [BCW09].
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Proposition 6.10. Consider a vector field X ∈ X1(M), a compact set D ⊂ MX ,
an open set O ⊂MX and a point x ∈MX satisfying:

• for any y ∈ O, any t ≥ 0, we have Xt(y) ∈ O and X1(O) ⊂ O;
• D ⊂ O −X1(O);

• orbX(x) ∩D = ∅.
Then for any K, ε > 0, there exists a vector field Y ∈ X1(M) with dC1(X,Y ) < ε
which satisfies the following property: for all y ∈ D, there exists n ≥ 1 such that

| log detPYx,n − log detPYy,n| > K.

Moreover, the support of X −Y is contained in the complement of the chain recur-
rent set of X.

Proof. Let X,D,O, x be as in the statement of Proposition 6.10. Fix K, ε > 0.
By Lemma 6.3, we may fix C > 1 such that the vector field X is bounded by C,
and let n0 = n0(d,C, 3K, ε), ρ0 = ρ0(d,C,K, ε) be chosen according to Proposition
6.8. We set N := 2dn0. Without loss of generality, we also assume that K satisfies
K > 2d log(2C) > 0.

We fix a finite cover F = {D1, . . . , D`} of D by compact sets satisfying:

(1) D ⊂
⋃`
j=1 int(Dj) ⊂ O −X1(O);

(2) for each j ∈ {1, . . . , `}, there exists a real number τj ∈ (0, 1), a point

pj ∈ O − X1(O), an open set Uj ⊂ NX,pj (ρ0|X(pj)|), and a compact set
∆j ⊂ Uj , such that the following properties hold:
(a) we have

Dj = {Xt(y) : y ∈ ∆j , t ∈ [0, τj ]}, (6.20)

and

int(Dj) ⊂ {Xt(y) : y ∈ Uj , t ∈ (0, τj)} ⊂ O −X1(O);

(b) for each t ∈ [0, N ], we have PXpj ,t(Uj) ⊂ NX,Xt(pj)(ρ0|Xt(pj)|);
(c) for each t ∈ [0, N − 1], for each t′ ∈ [0, 1], and for each y1, y2 ∈
PXpj ,t(∆j), it holds

d(PXXt(pj),t′(y1),PXXt(pj),t′(y2)) ≤ 2Cd(y1, y2); (6.21)

(3) orbX(x) ∩
⋃`
j=1 Uj = ∅;

(4) for each j ∈ {1, . . . , `}, the map (y, t) 7→ Xt(y) is injective restricted to the
set Uj × [0, 1], and thus, it is also injective on the whole set IX(pj , Uj , N);3

(5) there exists a partition {1, . . . , `} = J0 t · · · t J2d−1 such that for each
k ∈ {0, . . . , 2d − 1}, and for each j1 6= j2 ∈ Jk, we have

UX(pj1 , Uj1 , 1) ∩ UX(pj2 , Uj2 , 1) = ∅.
One can obtain F by tiling the compact set D by arbitrarily small cubes as in

(6.20), i.e., obtained by flowing small transversals ∆j under X, for j = 1, . . . , `.
Besides, since we assume that D ⊂ MX , Properties (1)-(4) are satisfied provided
that Dj , Uj and ∆j are chosen sufficiently small, for all j ∈ {1, . . . , `}. In par-
ticular, (6.21) is true provided that Dj and ∆j are chosen small enough, for all
j ∈ {1, . . . , `}, since X is bounded by C. Moreover, Item (5) holds true provided
that the diameter of the sets U1, . . . , U` is small enough, since M has dimension d.

3Indeed, for t > 1, we have Xt(Uj) = X1(Xt−1(Uj)), and Xt−1(Uj) ⊂ O −X1(O).
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For each j ∈ {1, . . . , `}, and for each i,m ≥ 0, we set

VXj (i,m) := int(UX(Xi(pj),PXpj ,i(Uj),m)).

Each set VXj (i,m) is open: it is the interior of the “tube” obtained by flowing points

in the transversal PXpj ,i(Uj) under X until they hit the section PXpj ,i+m(Uj). We

have the following properties:

• for each j ∈ {1, . . . , `}, the sets VXj (0, 1),VXj (1, 1), . . . ,VXj (N − 1, 1) are
pairwise disjoint;
• for each j ∈ {1, . . . , `}, the orbit orbX(x) is disjoint from UX(pj , Uj , N);
• for each (k1, j1) 6= (k2, j2) with k1, k2 ∈ {0, . . . , 2d − 1} and j1 ∈ Jk1 ,
j2 ∈ Jk2 , we have

VXj1 (n0k1, n0) ∩ VXj2 (n0k2, n0) = ∅. (6.22)

Indeed, the first item is a consequence of Point (4) above, the second one follows
from Point (3) above, and the third one is a consequence of Points (4)-(5) above.

Figure 5. Selection of the perturbation times for the different tiles.

Claim 4. There exists λ > 0 such that for each y ∈
⋃`
j=1Dj, there exist j ∈

{1, . . . , `}, z ∈ ∆j and u ∈ [0, 1] such that y = Xu(z), and NX,z(2λ) ⊂ ∆j.

Proof. Let λ1 > 0 be a Lebesgue number of the cover F . We choose λ2 > 0

such that NX,y(λ2) ⊂ B(y, λ1), for any y ∈
⋃`
j=1Dj , and we take λ > 0 such

that PXz,u(NX,z(2λ)) ⊂ NX,Xu(z)(λ2) for any z ∈
⋃`
j=1 ∆j and u ∈ [0, 1]. The

existence of λ > 0 follows from the compactness of
⋃`
j=1 ∆j and from the fact

that X is bounded by C > 0. By the definition of λ1 and D1, . . . , D`, for each

y ∈
⋃`
j=1Dj , there exist j ∈ {1, . . . , `}, z ∈ ∆j , and u ∈ [0, 1] such that y = Xu(z),

and B(y, λ1) ⊂ Dj . By the definition of λ2, we also have NX,y(λ2) ⊂ B(y, λ1).
Then, by the definition of λ and Dj , and since y = Xu(z) ∈ NX,y(λ2) ⊂ Dj , we
deduce that NX,z(2λ) ⊂ (PXz,u)−1(NX,y(λ2)) ⊂ ∆j . �
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For any η > 0, we define a sequence (aη(m))m≥0 inductively as follows:

aη(0) := 0; aη(m+ 1) := 2Caη(m) + η.

Note that limη→0 aη(N) = 0. In the following, we fix η0 > 0 small enough that

aη0(N) < (2C)−Nλ, η0 <
λ

2
.

For each k ∈ {0, . . . , 2d − 1} and j ∈ Jk, the set PXpj ,n0k
(∆j) and the point

Xn0k(x) satisfy the hypotheses of Proposition 6.8. We obtain a vector field Ỹ ∈
X1(M) such that the support of X − Ỹ is contained in VXj (n0k, n0). Moreover,

for distinct choices of (k, j), (6.22) guarantees that the associated perturbations
will be disjointly supported. Hence, applying Proposition 6.8 over all pairs (k, j)
with k ∈ {0, . . . , 2d − 1} and j ∈ Jk, we obtain a vector field Y ∈ X1(M) with the
following properties:

• the support of X − Y is contained in

2d−1⋃
k=0

⋃
j∈Jk

VXj (n0k, n0) ⊂
⋃̀
j=1

UX(pj , Uj , N);

• dC1(X,Y ) < ε;
• dC1(PXXi(pj),1,P

Y
X,Xi(pj),1) < δ(ε), for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• dC0(PXXi(pj),1,P
Y
X,Xi(pj),1) < η0, for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• for each k ∈ {0, . . . , 2d − 1} and for each z ∈
⋃
j∈Jk ∆j , there exists an

integer n ∈ {1, . . . , n0} such that:∣∣∣∣log detPYXn0k(x),n − log detPYPX
pj,n0k(z),n

∣∣∣∣ > 3K.

Claim 5. For each y ∈
⋃`
j=1Dj, there exist k ∈ {0, . . . , 2d − 1}, j ∈ Jk, and

t ∈ [0, 2], such that y = Yt(w), with w ∈ ∆j and PYX,pj ,n0k
(w) ∈ PXpj ,n0k

(∆j).

Proof. Let y ∈
⋃`
j=1Dj . By Claim 4, there exist j ∈ {1, . . . , `}, z ∈ ∆j

and u ∈ [0, 3
2 ] such that y = PXpj ,u(z), and NX,z(2λ) ⊂ ∆j . We have

dC0((PXpj ,u)−1, (PYX,pj ,u)−1) < η0 < λ
2 , hence y = PYX,pj ,u(w) = Yt(w), for some

t ∈ [0, 2], and w ∈ ∆j satisfying NX,w(λ) ⊂ ∆j . Moreover, X is bounded by
C, hence NX,Pi

X,pj
(w)((2C)−iλ) ⊂ PXpj ,i(∆j), for all i ∈ {0, . . . , N − 1}. For any

i ∈ {0, . . . , N − 1}, by (6.21), and by the fact that dC0(PXXi(pj),1,P
Y
X,Xi(pj),1) < η0,

we have the estimate

d(PXpj ,i+1(w),PYX,pj ,i+1(w)) ≤ d(PXXi(pj),1 ◦ P
X
pj ,i(w),PXXi(pj),1 ◦ P

Y
X,pj ,i(w))

+ d(PXXi(pj),1 ◦ P
Y
X,pj ,i(w),PYX,Xi(pj),1 ◦ P

Y
X,pj ,i(w))

≤ 2Cd(PXpj ,i(w),PYX,pj ,i(w)) + η0.

Thus, for any i ∈ {0, . . . , N − 1}, we obtain

d(PXpj ,i(w),PYX,pj ,i(w)) ≤ aη0(i) < (2C)−Nλ.

Let k ∈ {0, . . . , 2d − 1} be such that j ∈ Jk. We conclude that PYX,pj ,n0k
(w) ∈

NX,PY
X,pj,n0k(w)((2C)−n0kλ) ⊂ PXpj ,n0k

(∆j), where Yt(w) = y. �
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We deduce that for each y ∈ D ⊂ ∪`j=1Dj , there exist k ∈ {0, . . . , 2d−1}, j ∈ Jk,
w ∈ ∆j , t ∈ [0, 2], such that y = Yt(w), and there exists n ∈ {1, . . . , n0}, such that

| log detPYXn0k(x),n − log detPYPY
X,pj,n0k(w),n| > 3K.

Since the vector field X − Y has support in
⋃`
j=1 UX(pj , Uj , N), which is disjoint

from the orbit orbX(x), we have Xn0k(x) = Yn0k(x). Moreover, there exists t′ ∈
[n0k − 2, n0k + 2] such that PYX,pj ,n0k

(w) = Yt′(y). We thus have

| log detPYYn0k(x),n − log detPYYt′ (y),n| > 3K.

We have PYYt′ (y),n = PYYn0k(y),n ◦ P
Y
Yt′ (y),n0k−t′ , with n0k − t′ ∈ [−2, 2]. Recall that

K > 0 was chosen such that K > 2d log(2C). Since Y is close to X, we can assume
that Y is bounded by 2C. We thus get

| log detPYYn0k(x),n − log detPYYn0k(y),n|

≥ | log detPYYn0k(x),n − log detPYYt′ (y),n| − max
u′∈[−2,2]

max
y′∈MX

| log detPYy′,u′ |

> 3K − 2d log(2C) > 2K.

Besides, PYz,n+n0k
= PYYn0k(z),n ◦ P

Y
z,n0k

, hence of the following two cases holds:

• | log detPYx,n0k
− log detPYy,n0k

| > K;

• | log detPYx,n+n0k
− log detPYy,n+n0k

| > K.

In either case, | log detPYx,n′ − log detPYy,n′ | > K, for some n′ ∈ {1, . . . , N}, as
required.

By construction, the support of X − Y is contained in at most N iterates of
O −X1(O) for some trapping region O, and thus, the iterates of O −X1(O) for X
and Y coincide. This implies that the vector fields X and Y have the same chain
recurrent set, and they coincide on this set, which concludes the proof. �

6.5. Proof of Theorem 5.3. Let F be a countable and dense subset of M , and
let K = {Dn}n∈N be a countable collection of compact sets Dn, that verifies the
following conditions:

– diamDn → 0, as n→ +∞;

– for any n0 ≥ 1, it holds
⋃
n≥n0

Dn = M .

For each D ∈ K we define the following set

OD := {X ∈ X1(M) : ∃ open set U , X1(U) ⊂ U and D ⊂ (U −X1(U))}.

It is easy to see that OD is open. For any point x ∈ F we define

Ux,D = {X ∈ OD : x /∈ Zero(X) and orbX(x) ∩D = ∅}.

For a vector field X ∈ OD such that x ∈ MX , it could happen that the orbit
orbX(x) is non compact and it could accumulate on the compact set D without
intersecting it. In this case, by a small pertubation we could make the orbit of x
intersect D. For instance if D is a sink and x is a point in its basin. In particular,
the set Ux,D is not open.
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Figure 6. The orbit orbX(x) accumulates the compact set D.

The next lemma gives a criterion to know that a vector field X belongs to the
interior of Ux,D.

Lemma 6.11. Let X ∈ Ux,D and let U ⊂M be an open subset such that X1(U) ⊂
U and D ⊂ (U − X1(U)). Assume that orbX(x) ∩ (U − X1(U)) 6= ∅. Then X
belongs to the interior of Ux,D, in particular, for any Y ∈ X1(M) sufficiently close

to X it holds that orbY (x) ∩D = ∅.

Proof. Observe that the conditions X1(U) ⊂ U and D ⊂ (U − X1(U)) are open.

If orbX(x) ∩ U 6= ∅, we can fix t1, t2 ∈ R such that
(

orbX(x) ∩ U −X1(U)
)

(
X(t1,t2)(x). We can also assume that this property is open, that is, for any C1

vector field Y sufficiently C1-close to X, it holds

orbY (x) ∩ (U − Y1(U)) ( Y[t1,t2](x).

Since D and X[t1,t2](x) are compact and disjoint, the distance between them is

strictly positive. This implies that for any Y sufficiently C1-close to X it holds
that Y[t1,t2](x) does not intersect D. Since orbY (x) ∩ (U − Y1(U)) ⊂ Y[t1,t2](x), we

conclude that orbY (x)∩D = ∅. In particular, X belongs to the interior of Ux,D. �

The proof of the following lemma is the same as Lemma 15 in [BCW09].

Lemma 6.12. The set Int(Ux,D) ∪ Int(OD − Ux,D) is open and dense inside OD.

First, observe that if X ∈ Ux,D then D ∪ {x} does not have any singularity of
X. In particular, the linear Poincaré flow is well defined for any point y ∈ D∪{x}.
For x ∈ F , D ∈ K and any K ∈ N, we define:

Vx,D,K :=
{
X ∈ Int(Ux,D) : ∀ y ∈ D, ∃n ≥ 1, | log detPXy,n − log detPXx,n| > K

}
.

Using the fact that D is compact, it is easy to see that Vx,D,K is open inside
Int(Ux,D). Proposition 6.10 implies that Vx,D,K is dense in Int(Ux,D). Therefore,
the set

Wx,D,K = Vx,D,K ∪ Int(OD − Ux,D) ∪ Int(X1(M)−OD)

is open and dense in X1(M). Define the set

R0 :=
⋂

x∈F,D∈K,K∈N
Wx,D,K .
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By Baire’s theorem, this set is residual in X1(M). Let R = R0 ∩ R∗, where R∗ is
the residual subset given by Theorem 5.2.

Let X ∈ R. Consider x ∈ F − Zero(X) and y ∈ M − CR(X) such that y /∈
orbX(x). Since y /∈ CR(X), by Conley’s theory there exists an open set U ⊂ M
such that X1(U) ⊂ U and y ∈ (U − X1(U)). This is a direct consequence of the
existence of complete Lyapunov functions for X, which is given by the so called
Fundamental Theorem of dynamical systems (see Definition 4.7.1, for the definition
of complete Lyapunov function, and Theorem 4.8.1 in [AN07]). Observe also that

orbX(x) ∩ (U −X1(U)) is either empty or a compact orbit segment. Take D ∈ K
a compact set that contains y. If its diameter is sufficiently small, we have that
D ⊂ (U −X1(U) and orbX(x) ∩D = ∅.

Hence X ∈ Ux,D. Since X ∈ R0 and by the definition of R0, for every K ∈ N, it
holds that X ∈ Wx,D,K . By the definition of Wx,D,K and since X ∈ Ux,D, we have
that X ∈ Vx,D,K . Therefore, for any K ∈ N, there exists n ≥ 1 such that

| log detPXx,n − log detPXy,n| > K.

We conclude that X verifies the unbounded normal distortion property. �

Appendix A. The separating property is not generic

In this section we prove that the separating property is not generic. Indeed we
will see that it is not even C1-dense. Let M be a compact, connected Riemannian
manifold. Take any Morse function f ∈ C2(M,R) and let X := ∇f be the gradient
vector field which is C1. It holds that X has two hyperbolic singularities, σs and
σu with the following properties:

• σs is a hyperbolic sink and σu is a hyperbolic source;
• W s(σs) ∩Wu(σu) 6= ∅;
• for any C1 vector field Y which is sufficiently C1-close to X, then
W s(σs(Y )) ∩Wu(σu(Y )) 6= ∅, where σ∗(Y ) is the continuation of σ∗ for
the vector field Y , for ∗ = s, u.

We claim that X is C1-robustly not separating. Let U be a compact ball inside
(W s(σs) ∩Wu(σu)) − {σs, σu}. Since compact parts of stable and unstable mani-
folds vary continuously with the vector field, it holds for any Y sufficiently C1-close
to X it holds that U ⊂ (W s(σs(Y )) ∩Wu(σu(Y )))− {σs, Bu}.

Take any ε > 0 and consider the balls B(σs,
ε
2 ) and B(σu,

ε
2 ). Since U is compact,

there exists TX = T (ε) > 0 such that any point x ∈ U verifies

X−t(x) ∈ B
(
σu,

ε

2

)
and Xt(x) ∈ B

(
σs,

ε

2

)
, for all t ≥ T . (A.1)

Notice that for any two points x, y ∈ B(σs,
ε
2 ) it holds that d(Xt(x), Xt(y)) < ε,

for all t ≥ 0. Similar statement is true for points in B(σu,
ε
2 ) and the backward

orbit.
Since T that verifies (A.1) is fixed, there exists δ > 0 such that for any x ∈ U

and any y ∈ B(x, δ) ⊂ U , it holds that

d(Xt(x), Xt(y)) < ε, for any t ∈ R.

In particular X is not separating. Also, observe that this holds for any Y sufficiently
C1-close to X. Thus we conclude that X is C1-robustly not separating.
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Remark A.1. It is easy to see that the same type of example proves that the hy-
pothesis of Proposition 2.8 is not even C1-dense. We conclude that the hypotheses
of Propositions 2.4 and 2.8 are not C1-dense as well.

Appendix B. Periodic orbits and chain-recurrent classes for flows:
sketch of the proof of Item (3) in Theorem 5.2

In this appendix, we briefly explain the structure of the proof of Item (3) of
Theorem 5.2 for diffeomorphisms, which was proved by Crovisier in [Cro06]. Then
we explain why the same proof works for vector fields as well.

As we will see, the proof of this result follows easily from Theorem B.1 below,
which is an easy consequence of Proposition B.2 below. We emphasize that the proof
of Proposition B.2 has two parts: a perturbation part, which only uses Hayashi’s
connecting lemma, and a combinatorial part, which has no perturbation at all.
Usually in these pertubation lemmas such as the connecting lemma, closing lemma
and others, the combinatorial part is the hardest part in the proof. The idea of
the combinatorial part is to find the right pieces of orbits that you will connect by
some elementary C1-perturbation. The same happens in the proof of Item (3) of
Theorem 5.2. There is the combinatorial argument that will give which pieces of
orbits are good to connect, and instead of some elementary perturbation you use
Hayashi’s connecting lemma to connect these pieces of orbits. We remark that the
combinatorial argument will be the same for diffeomorphisms and flows, and that
Hayashi’s connecting lemma is available for flows, so the perturbative tool is also
available for flows.

Let us give some of the dynamical background used in the proof. Below, we
follow the notation in [Cro06].

Let M be a compact, connected, Riemannian manifold, and let Diff1(M) be the
set of C1-diffeomorphisms of M . A diffeomorphism f ∈ Diff1(M) verifies Condition
(A) if for any n ∈ N, every periodic orbit of period n is isolated in M . Observe
that by Kupka-Smale’s Theorem (see Theorem 3.1 in [PM82]), Condition (A) is a
Cr-generic condition.

Let f ∈ Diff1(M). We say that a compact and invariant set X is weakly transitive
if for any non-empty open sets U and V that intersect X , and any neighborhood
W of X , there exists a segment of orbit {x, f(x), · · · , fn(x)} contained in W and
such that x belongs to U and fn(x) belongs to V , and n ≥ 1.

The main perturbation technique we want to describe is given by Theorem 3
from [Cro06] which states the following:

Theorem B.1 (Theorem 3 in [Cro06]). Let f be a C1 diffeomorphism that satisfies
Condition (A), let U be a C1-neighborhood of f in Diff1(M) and let X be a weakly
transitive set of f . Then, for any η > 0, there exists g ∈ U and a periodic orbit O
of g such that O is η-close to X for the Hausdorff distance.

Theorem B.1 is the main perturbation technique used to prove Item (3) in The-
orem 5.2 (which is given by Theorem 4 in [Cro06]). The key ingredient in the proof
of this theorem is the following proposition:

Proposition B.2 (Proposition 8 in [Cro06]). Let f be a C1 diffeomorphism and
U a C1-neighborhood of f . Then, there exists N ≥ 1 with the following property:

if W ⊂M is an open set and X a finite set of points inside W such that:
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(1) the points f j(x) for j ∈ {1, · · · , N} are two-by-two distinct and contained
in W , for x ∈ X ;

(2) for any two points x, x′ ∈ X , for any neighborhood U and V of x and x′,
respectively, there is a point z ∈ U and fn(z) ∈ V , with n > 1, such that
{z, · · · , fn(z)} ⊂W ;

then, for any η > 0 there exists a perturbation g ∈ U of f with support in the union
of the open sets f j(B(x, η)), for x ∈ X and j ∈ {0, · · · , N−1}, and a periodic orbit
O of g contained in W , which crosses all the balls B(x, η), for x ∈ X .

The proof of Theorem B.1 using Proposition B.2 follows from a short argument.
Let us explain the main steps of the argument. Suppose that f is a diffeomorphism
verifying Condition (A) and X is a weakly transitive set. We may suppose also
that X is not a periodic orbit, otherwise there would be nothing to prove. We
use Condition (A) to find a finite set X̂ ⊂ X such that any point x ∈ X̂ is not a

periodic point, any two different points in X̂ have disjoint orbits, and any point
z ∈ X belongs to B(fk(x), η0), for some k ∈ Z and x ∈ X̂. We then can fix
some η ∈ (0, η0) to be small enough such that any compact invariant set K which
is contained in a η0-neighborhood of X and intersecting all the balls B(x, η) for

x ∈ X̂, is η0-close to X̂ in the Hausdorff topology. One can then apply Proposition
B.2 and obtain a periodic orbit that verifies the conclusion of the theorem (see
Section 2.4 in [Cro06]).

Let us now explain the structure of the proof of Proposition B.2. We also refer
the reader to Section 4.0 in [Cro06], where the structure and difficulties of the proof
of Proposition B.2 are explained very clearly. The proof has two parts: the actual
perturbation part, which only uses Hayashi’s connecting lemma; and a combinato-
rial part, which is the most delicate part.

Let us recall Hayashi’s connecting lemma. The original proof was given by
Hayashi in [Hay99]. Some other references are given in [Ar01, WX00, BC04].

Theorem B.3 (Hayashi’s connecting lemma, [Hay99, Ar01, WX00, BC04]). Let
f0 be a diffeomorphism of a compact manifold M , and U a C1-neighborhood of f0.
Then there exists N ≥ 1 such that for any z ∈ M which is not a periodic point of
period less than or equal to N , any two open neighborhoods V and U of z such that
V ⊂ U has the following property.

For any diffeomorphism f that coincides with f0 in U ∪ · · · ∪ fN−1
0 (U), for any

two points p, q ∈ M −
(
U ∪ · · · ∪ fN0 (U)

)
and any integers np, nq ≥ 1 such that

fnp(p) belongs to V and f−nq (q) ∈ V there is a diffeomorphism g in U such that:

• g coincides with f on M −
(
U ∪ · · · ∪ fN0 (U)

)
;

• there exists m ≥ 1 such that gm(p) = q;
• the piece of orbit {p, · · · , gm(p)} can be cut into three parts:

– the beginning {p, · · · , gm′(p)}, for some m′ ∈ N, is contained in

{p, · · · , fnp(p)} ∪ U ∪ · · · ∪ fN0 (U);

– the central part {gm′(p), · · · , gm′+N (p)} is contained in

U ∪ · · · ∪ fN0 (U);

– the end {gm′+N (p), · · · , gm(p)} is contained in

U ∪ · · · ∪ fN0 (U) ∪ {f−nq (q), · · · , q}.
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Let X be a finite set which is weakly transitive, and let W be a neighborhood
of X , and fix some η > 0. Fix some order in X = {p1, · · · , pk} and for each pi
we can associate two neighborhoods Vi ⊂ Ui contained in W , where we will apply
the connecting lemma. Observe that we may consider these neighborhoods to be
arbitrarily small. The weak transitivity implies that for each i, there is a point zi
in Vi whose future orbit intersects Vi+1 and it is contained in W . The first naive
approach then would be to simply use the connecting lemma, and connect the
orbit of each zi with zi+1, where one would connect the future orbit of zk with z0.
Applying the connecting lemma k times, we would hope to have created a periodic
orbit for a diffeomorphism g ∈ U , and this periodic orbit contained in W . This
is a perturbation of f whose support is contained in the union of the first N − 1
iterates of Ui, for every i = 1, · · · , k. This approach would only work if we had the
following “ideal” picture (see Figure 7 below).

p1

z1

p2

z2

p3

z3

p4

z4

Figure 7. “Ideal” picture.

The problem is that with this approach one cannot guarantee that the piece
of future orbit of zi connecting Vi and Vi+1 does not intersect any other Uj , for
j 6= i, i+ 1 (see Figure 8 below).
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Figure 8. “General” picture.

There is a delicate inductive and “combinatorial” argument that allows one to
find a smaller set X ′ ⊂ X , with X ′ = {p′1, · · · , p′s}, neighborhoods for the connecting
lemma V ′i ⊂ U ′i , and points {z1, · · · , zs} that verify the following: each zi connects
V ′i to V ′i+1, the piece of future orbit of zi connecting these two neighborhoods does
not intersect any other U ′j , for j 6= i, i+ 1, also the union of these pieces of future
orbits of the zi’s intersects every B(p, η), for every p ∈ X . Hence, one can apply
Hayashi’s connecting lemma around the points of the set X ′, connecting the orbits
of the points zi mentioned above, and obtain a perturbation g of f with a periodic
orbit that verifies the conclusion of Proposition B.2. We refer the reader to Section
4.0 in [Cro06] for more details.

There is no perturbation in the combinatorial part, even though it is the most
delicate part. Observe that the points in X are not fixed points, and if they are
periodic they must have the period larger than N .

Since Hayashi’s connecting lemma is also available for flows [Hay99], and the
points where we are using the connecting lemma are far from the singularities (it
is a finite fixed set of non-singular points), one can obtain the following result for
flows:

Proposition B.4. Let X be a C1 vector field on M and let U be a C1-neighborhood
of X. There exists T ≥ 1 with the following property: if W ⊂ M is an open set
and X is a finite set of points inside W such that:

(1) for each x ∈ X the map t 7→ Xt(x) is injective for t ∈ [0, T ] and X[0,T ](x)
is contained in W ;

(2) for any two points x, x′ ∈ X , for any neighborhood U and V of x and x′,
respectively, there is a point z ∈ U and T ′ > 1 such that XT ′(z) ∈ V and
X0,T ′(z) is contained in W ;

then, for any η > 0 there exists a perturbation Y of X in U with support in the
union of the open sets ∪t∈[0,T−1]Xt(B(x, η)), with x ∈ X , and a periodic orbit O
for Y contained in W and intersects all the balls B(x, η), for x ∈ X .

Obseve that for flows we can also define an analogous of Condition (A), which
we will call (Af). We say that a vector field verifies Condition (Af) if for any T > 0
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every periodic orbit of period less than or equal to T is isolated in M . As explained
above, this proposition implies the following theorem:

Theorem B.5. Let X be a C1 vector field verifying Condition (Af), let U be a
C1-neighborhood of X and let X be a weakly transitive set for X. Then, for any
η > 0, there exists Y in U and a periodic orbit O for Y which is η-close to X for
the Hausdorff topology.

Below, we explain how Crovisier uses Theorem B.1 to conclude Item (3) in
Theorem 5.2. The same proof works for flows.

First, given a metric space H we denote by K(H) the set of all compact sets of
H with the Hausdorff distance. For each diffeomorphism f we let Kper(f) be the
closure in K(M) of the set of periodic points of f . This is a set in K(K(M)). It
is known that the the points of continuity of the function f 7→ Kper(f) contains a

C1-residual subset of Diff1(M), see for instance [Tak71]. Let us denote this residual
set by R1.

For each diffeomorphism f , consider also KWT (f) to be the closure in K(M) of
the set of weak transitive sets of f . Also, let KCT (f) to be the closure in K(M)
of the set of chain transitive sets of f . Both of these sets belong to K(K(M)). It
is known that there exists a C1-residual set R2 such that for any f ∈ R2 we have
KWT (f) = KCT (f).

We claim that if f ∈ R1 ∩ R2 then Kper(f) = KWT (f) = KCT (f). Suppose
that Kper(f) ( KWT (f). Then there exists a weak transitive set X and some
open neighborhood W of X in K(M), such that Kper(f) does not intersect W .
By the continuity of the function f 7→ Kper(f), at the point f , we know that this
property holds in a neighborhood of f . However, Theorem B.1 implies that there is
a diffeomorphism g which is C1-close to f such that g has a periodic orbit O which
is close in the Hausdorff distance to X . This is a contradiction.

This implies that C1-generically any chain transitive set is the Hausdorff limit of
periodic orbits. Since a chain recurrent class is a chain transitive set, we conclude
Item (3) of Theorem 5.2 for diffeomorphisms. We remark that the same proof also
holds for flows. As we mentioned before, the main perturbative tool used is given
by Theorem B.1.
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singular flows. Ann. Sci. Éc. Norm. Supér. (4), 51, pp. 39–112.

[Hay99] Hayashi, S. (1999). Connecting invariant manifolds and the solution of the C1-stability
and Ω-stability conjectures for flows. Ann. of Math., 145, pp. 81–137, (1997) and Ann. of

Math., 150, pp. 353–356, (1999).

[Hur86] Hurley, M. (1986). On the generic nonexistence of first integrals. Proc. Amer. Math. Soc.,
98, pp. 142–144.

[KM73] Kato, K. & Morimoto, A. (1973). Topological stability of Anosov flows and their central-
izers, Topology, 12, pp. 255–273.

[Ka79] Katok, A. (1979) Bernoulli Diffeomorphisrns on surfaces. Annals of Mathematics 110 pp.

529–547.
[Kop70] Kopell, N. (1970). Commuting diffeomorphisms, Globa Analysis, Proc. Sympos. Pure

Math., XIV, pp. 165–184.
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E-mail: brunosantiago@id.uff.br

55


	1. Introduction
	2. Collinearity
	3. Quasi-triviality
	4. The study of invariant functions and trivial centralizers
	5. The generic case
	6. Proof that the unbounded normal distortion is C1-generic
	Appendix A. The separating property is not generic
	Appendix B. Periodic orbits and chain-recurrent classes for flows: sketch of the proof of Item (3) in Theorem 5.2
	References

