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Abstracts

Spectral determination of a class of open dispersing billiards

Martin Leguil

(joint work with Péter Bálint, Jacopo De Simoi, Vadim Kaloshin)

We consider billiard tables D ⊂ R2 given by D = R2 \
⋃m
i=1Oi, for some integer

m ≥ 3, where each Oi is a convex domain with sufficiently smooth boundary ∂Oi
(at least of class C3; in some places, we will actually assume the boundary to
be analytic). We refer to each of the Oi’s as obstacle, and parametrize ∂Oi in
arclength. We assume that the non-eclipse condition holds, i.e., that the convex
hull of any two obstacles is disjoint from the other m− 2 obstacles. The set of all
billiard tables obtained by removing from the plane m strictly convex obstacles
with C3, resp. analytic boundary satisfying the non-eclipse condition will be
denoted by B(m), resp. Bω(m) ⊂ B(m).

Fix D = R2 \
⋃m
i=1Oi ∈ B(m). We denote the collision space by

M = ∪iMi, Mi =
{

(q, v), q ∈ ∂Oi, v ∈ R2, ‖v‖ = 1, 〈v, n〉 ≥ 0
}
,

where n is the unit normal vector to ∂Oi pointing inside D. Each x = (q, v) ∈M
can be identified with a pair (s, r) ∈ R×[−1, 1], where s is the associated arclength
parameter, ϕ is the oriented angle between n and v, and r := sin(ϕ). Whenever
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it is well-defined, the image by the billiard map F of a pair (s, r) of parameters is
the new pair (s′, r′) associated to the next collision of the billiard trajectory with
∂D; the map F is symplectic for the form ds ∧ dr (in fact, exact symplectic).

It is clear that a lot of trajectories will escape to infinity. In fact, due to the
convexity of the obstacles, the set of points x = (s, r) whose iterates Fn(x) under
the billiard map are well-defined for any n ∈ Z is homeomorphic to a Cantor setNE
(see e.g. [4, 7]). The restriction of the dynamics to NE is conjugated to a subshift
of finite type associated to the transition matrix A := (1− δij)1≤i,j≤m ∈Mm(R).
In other words, any admissible word (ςj)j ∈ {1, · · · ,m}Z – i.e., such that ςj+1 6= ςj
for all j ∈ Z – can be realized by a unique orbit.1 In particular, any periodic orbit
of period p ≥ 2 can be represented by an admissible word σ∞ := . . . σσσ . . . for
some finite admissible word σ = (σ1σ2 . . . σp) ∈ {1, · · · ,m}p. We denote by Adm
the set of finite admissible words σ ∈ ∪p≥2{1, · · · ,m}p.

The Marked Length Spectrum MLS(D) of D is defined as the function

L : Adm→ R+, σ 7→ L(σ),

where L(σ) is the length of the closed trajectory labeled by σ. In the following, an
object is said to be aMLS-invariant if it can be obtained by the sole knowledge of
the Marked Length Spectrum. We are interested in the following inverse problem:

MLS(D)  “Geometry” of D?

Note that in finite regularity, the information given by MLS(D) is insufficient
to reconstruct the geometry of the whole table; at best, we can hope to describe the
geometry near points associated to an arclength parameter s such that (s, r) ∈ NE
for some r ∈ [−1, 1]. In a first work [1], we show that it is indeed possible to extract
some information from MLS(D) on the local geometry near very specific points.
In [3], we assume that the boundary of the obstacles is analytic, i.e. D ∈ Bω(m),
in such a way that local geometric information may determine the whole table; in
this case, under some symmetry and (mild) non-degeneracy assumptions, we show
that MLS(D) does determine D up to isometries.

0.1. Results in finite regularity. Let us fix m ≥ 3 and D = R2 \
⋃m
i=1Oi ∈

B(m). Given a periodic point x = (s, r) ∈ NE , the basic idea is to combine the
information given by a sequence (xn)n≥0 of periodic points xn ∈ NE accumulating
x in order to extract some geometric quantities at the point of arclength parameter
s. Thanks to the symbolic coding recalled above, this amounts to considering
periodic orbits encoded by longer and longer finite admissible words obtained by
truncating the coding of x.

One major issue is that a priori, the information obtained in this way is “av-
eraged” over the different points in the orbit of x; yet, in [1], we found out some
mechanism which allows us to distinguish between the two points in 2-periodic
orbits. More precisely, let us consider a 2-periodic orbit encoded by a word
σ = (σ1σ0) ∈ {1, · · · ,m}2, σ0 6= σ1. Let τ1 ∈ {1, · · · ,m} \ {σ0, σ1}, and set
τ := (τ1σ0). We consider the sequence of periodic orbits encoded by the words

1Each symbol ςj ∈ {1, · · · ,m} corresponds to the obstacle Oςj where the bounce happens.
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hn := τσn ∈ Adm, n ≥ 0; as n→ +∞, their points accumulate the points of some
orbit h∞ that is homoclinic to the orbit encoded by σ.

Theorem 0.1 (Bálint-De Simoi-Kaloshin-Leguil [1]). We denote by R0, R1 > 0
the respective radii of curvature at the points with symbols σ0, σ1, and let λ < 1 be
the smallest eigenvalue of DF2 at the points of σ. For n� 1, it holds:

(1) L(τσn)− (n+ 1)L(σ)− L∞ = −C · Q
(

2R0

L(σ) ,
2R1

L(σ)

)
λn +O(λ

3n
2 ), n even,

(2) L(τσn)− (n+ 1)L(σ)− L∞ = −C · Q
(

2R1

L(σ) ,
2R0

L(σ)

)
λn +O(λ

3n
2 ), n odd,

for some real number L∞ = L∞(σ, τ) ∈ R, some constant C = C(σ, τ) > 0, and
some explicit quadratic form Q : R× R→ R.

The reason why the parity of n affects the estimates is due to the “palindromic”
symmetry of hn: indeed, each point in ∂D with arclength parameter s such that
(s, r) belongs to the orbit hn for some r ∈ [−1, 1] is seen twice – as (s,−r) also
belongs to hn – except when r = 0; this is the case for exactly two points in the
orbit hn, associated to perpendicular bounces. Among those two points, only one
contributes to the first order term in the above estimates, and it is either on the
boundary of the obstacle Oσ0

or of the obstacle Oσ1
depending on the parity of n.

Theorem 0.1 has the following geometric consequence:

Corollary 0.2 (Bálint-De Simoi-Kaloshin-Leguil [1]). The radii of curvature at
the bouncing points of periodic orbits of period two are MLS-invariants.

Moreover, by Theorem 0.1, the Lyapunov exponent − 1
2 log λ of σ is also aMLS-

invariant. More generally, let us consider a periodic orbit of period p ≥ 2, encoded
by some finite admissible word σ̃ ∈ {1, · · · ,m}p. The Lyapunov exponent LE(σ̃) of

σ̃ is equal to − 1
p log λ̃, where λ̃ = λ̃(σ̃) < 1 is the smallest eigenvalue of DFp at

the points in the orbit. By adapting the construction explained above, we get:

Theorem 0.3 (Bálint-De Simoi-Kaloshin-Leguil [1]). The Lyapunov exponent of
each periodic orbit is a MLS-invariant.

0.2. MLS-determination of analytic billiard tables. Let us now consider the
case where the boundary of the table is analytic. Fix m ≥ 3, and let Bω

sym(m) ⊂
Bω(m) be the subset of all billiard tables D ∈ Bω(m) such that:

• the jets of the curvature function K are the same at the endpoints of the
2-periodic orbit (12);
• the jets of K|∂O1 , K|∂O2 are even, assuming that 01 ∈ ∂O1, 02 ∈ ∂O2 are

the arclength parameters of the endpoints of the orbit (12).

In the analytic setting, and modulo the partial Z2 × Z2-symmetry assumption
introduced above, we can show:

Theorem 0.4 (De Simoi-Kaloshin-Leguil [3]). There exists an open and dense set
of billiard tables B∗sym(m) ⊂ Bω

sym(m) so that if D ∈ B∗sym(m), then the geometry
of D is entirely determined (modulo isometries) by MLS(D).
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The open and dense condition we require is actually a non-degeneracy condition:
roughly speaking, it means that after a change of coordinates, the first coefficient
in the expansion of the dynamics does not vanish.2

It is a standard fact that any continuous deformation of smooth domains which
preserves the (unmarked) Length Spectrum LS(D) automatically preservesMLS(D)
(see e.g. [8, Proposition 3.2.2]). A family (Dt)t∈(−1,1) is an iso-length-spectral fam-
ily of billiards in B∗sym(m) if each Dt is in B∗sym(m), the map (−1, 1) 3 t 7→ Dt is
continuous, and LS(Dt) = LS(D0), for all t ∈ (−1, 1). Therefore, we obtain:

Corollary 0.5 ([3]). Any iso-length-spectral deformation in B∗sym(m) is isometric.

Our results are an analog of the result of Colin de Verdière [2] for the class of
chaotic billiards under consideration, or an analog in terms of the Marked Length
Spectrum of the results of Zelditch [9, 10, 11] (see also [5]).

Let us give some ideas of the proof. Fix D ∈ B∗sym(m). For the 2-periodic
σ = (12), we consider the same sequence (hn)n≥0 of periodic orbits accumulating
some orbit h∞ homoclinic to σ. In a first time, we show that after a canonical3

symplectic change of coordinates, the dynamics of the square F2 of the billiard
map in a neighbourhood of the trajectory h∞ can be replaced with two maps:
the Birkhoff Normal Form N = N(σ) of F2 associated to σ, and some gluing
map G = G(σ, τ). Working with this new system of coordinates, we show that
for each integer n ≥ 0, the Lyapunov exponent of hn can be expanded as a series
(reminiscent of the asymptotic expansion of the lengths obtained in [6]):

2λn cosh(2(n+ 1)LE(hn)) =

+∞∑
p=0

p∑
q=0

Lq,pn
qλnp,

for some sequence (Lq,p)p=0,··· ,+∞
q=0,··· ,p

, and where λ = λ(σ) < 1. In particular, each co-

efficient Lq,p is aMLS-invariant. Then, we show that modulo the non-degeneracy
condition mentioned previously, it is possible to extract enough information from
(Lq,p)p,q to recover N and the differential DG at some points in hn. In fact, the
MLS-determination of N does not require any symmetry assumption, and the
same procedure can be carried out for more general palindromic periodic orbits.
Following [2], and thanks to the Z2×Z2-symmetry of {O1,O2}, we then show that
the jet of K can be read off from the coefficients of N , which by analyticity deter-
mines entirely the geometry of O1,O2. Finally, we explain how the information
given by the differential of the gluing map G can be utilized in order to recover
the geometry of the other obstacles (note that no symmetry assumption is needed
for this last step).
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[5] Iantchenko, A., Sjöstrand, J. and Zworski, M.; Birkhoff Normal Forms in semi-classical

inverse problems, Mathematical Research Letters 9 (2002), pp. 337–362.
[6] Marvizi, S. and Melrose, R.; Spectral Invariants of convex planar regions, J. Differential

Geometry 17 (1982), pp. 475–502.

[7] Morita, T.; The symbolic representation of billiards without boundary condition, Trans.
Amer. Math.Soc. 325 (1991), pp. 819–828.

[8] Siburg K. F.; The Principle of Least Action in Geometry and Dynamics, Lecture Notes in
Mathematics, Vol. 1844 (2004).

[9] Zelditch, S.; Spectral determination of analytic bi-axisymmetric plane domains, Geom.

Funct. Anal. 10 (2000), no. 3, pp. 628–677.
[10] Zelditch, S.; Inverse spectral problem for analytic domains, I. Balian-Bloch trace formula,

Comm. Math. Phys. 248 (2004), no. 2, pp. 357–407.

[11] Zelditch, S.; Inverse spectral problem for analytic domains II: domains with one symmetry,
Annals of Mathematics (2) 170 (2009), no. 1, pp. 205–269.

Reporter: David Bechara


